| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cygctb.1 |
|
| 2 |
|
cyggex.o |
|
| 3 |
1 2
|
cyggex |
|
| 4 |
3
|
expcom |
|
| 5 |
4
|
adantl |
|
| 6 |
|
simpll |
|
| 7 |
|
ablgrp |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
simplr |
|
| 10 |
1 2
|
gexcl2 |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
|
eqid |
|
| 13 |
1 2 12
|
gexex |
|
| 14 |
6 11 13
|
syl2anc |
|
| 15 |
|
simplr |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
1 17 18 12
|
cyggenod |
|
| 20 |
8 9 19
|
syl2anc |
|
| 21 |
|
ne0i |
|
| 22 |
1 17 18
|
iscyg2 |
|
| 23 |
22
|
baib |
|
| 24 |
8 23
|
syl |
|
| 25 |
21 24
|
imbitrrid |
|
| 26 |
20 25
|
sylbird |
|
| 27 |
26
|
expdimp |
|
| 28 |
16 27
|
sylbid |
|
| 29 |
28
|
rexlimdva |
|
| 30 |
14 29
|
mpd |
|
| 31 |
30
|
ex |
|
| 32 |
5 31
|
impbid |
|