Metamath Proof Explorer


Theorem cyggexb

Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygctb.1 B = Base G
cyggex.o E = gEx G
Assertion cyggexb G Abel B Fin G CycGrp E = B

Proof

Step Hyp Ref Expression
1 cygctb.1 B = Base G
2 cyggex.o E = gEx G
3 1 2 cyggex G CycGrp B Fin E = B
4 3 expcom B Fin G CycGrp E = B
5 4 adantl G Abel B Fin G CycGrp E = B
6 simpll G Abel B Fin E = B G Abel
7 ablgrp G Abel G Grp
8 7 ad2antrr G Abel B Fin E = B G Grp
9 simplr G Abel B Fin E = B B Fin
10 1 2 gexcl2 G Grp B Fin E
11 8 9 10 syl2anc G Abel B Fin E = B E
12 eqid od G = od G
13 1 2 12 gexex G Abel E x B od G x = E
14 6 11 13 syl2anc G Abel B Fin E = B x B od G x = E
15 simplr G Abel B Fin E = B x B E = B
16 15 eqeq2d G Abel B Fin E = B x B od G x = E od G x = B
17 eqid G = G
18 eqid y B | ran n n G y = B = y B | ran n n G y = B
19 1 17 18 12 cyggenod G Grp B Fin x y B | ran n n G y = B x B od G x = B
20 8 9 19 syl2anc G Abel B Fin E = B x y B | ran n n G y = B x B od G x = B
21 ne0i x y B | ran n n G y = B y B | ran n n G y = B
22 1 17 18 iscyg2 G CycGrp G Grp y B | ran n n G y = B
23 22 baib G Grp G CycGrp y B | ran n n G y = B
24 8 23 syl G Abel B Fin E = B G CycGrp y B | ran n n G y = B
25 21 24 syl5ibr G Abel B Fin E = B x y B | ran n n G y = B G CycGrp
26 20 25 sylbird G Abel B Fin E = B x B od G x = B G CycGrp
27 26 expdimp G Abel B Fin E = B x B od G x = B G CycGrp
28 16 27 sylbid G Abel B Fin E = B x B od G x = E G CycGrp
29 28 rexlimdva G Abel B Fin E = B x B od G x = E G CycGrp
30 14 29 mpd G Abel B Fin E = B G CycGrp
31 30 ex G Abel B Fin E = B G CycGrp
32 5 31 impbid G Abel B Fin G CycGrp E = B