Metamath Proof Explorer


Theorem cygth

Description: The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ZZ / n ZZ , for 0 <_ n (where n = 0 is the infinite cyclic group ZZ ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion cygth G CycGrp n 0 G 𝑔 /n

Proof

Step Hyp Ref Expression
1 hashcl Base G Fin Base G 0
2 1 adantl G CycGrp Base G Fin Base G 0
3 0nn0 0 0
4 3 a1i G CycGrp ¬ Base G Fin 0 0
5 2 4 ifclda G CycGrp if Base G Fin Base G 0 0
6 eqid Base G = Base G
7 eqid if Base G Fin Base G 0 = if Base G Fin Base G 0
8 eqid / if Base G Fin Base G 0 = / if Base G Fin Base G 0
9 6 7 8 cygzn G CycGrp G 𝑔 / if Base G Fin Base G 0
10 fveq2 n = if Base G Fin Base G 0 /n = / if Base G Fin Base G 0
11 10 breq2d n = if Base G Fin Base G 0 G 𝑔 /n G 𝑔 / if Base G Fin Base G 0
12 11 rspcev if Base G Fin Base G 0 0 G 𝑔 / if Base G Fin Base G 0 n 0 G 𝑔 /n
13 5 9 12 syl2anc G CycGrp n 0 G 𝑔 /n
14 gicsym G 𝑔 /n /n 𝑔 G
15 eqid /n = /n
16 15 zncyg n 0 /n CycGrp
17 giccyg /n 𝑔 G /n CycGrp G CycGrp
18 14 16 17 syl2imc n 0 G 𝑔 /n G CycGrp
19 18 rexlimiv n 0 G 𝑔 /n G CycGrp
20 13 19 impbii G CycGrp n 0 G 𝑔 /n