Metamath Proof Explorer


Theorem cygzn

Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ , and an infinite cyclic group is isomorphic to ZZ / 0 ZZ ~ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygzn.b B = Base G
cygzn.n N = if B Fin B 0
cygzn.y Y = /N
Assertion cygzn G CycGrp G 𝑔 Y

Proof

Step Hyp Ref Expression
1 cygzn.b B = Base G
2 cygzn.n N = if B Fin B 0
3 cygzn.y Y = /N
4 eqid G = G
5 eqid x B | ran n n G x = B = x B | ran n n G x = B
6 1 4 5 iscyg2 G CycGrp G Grp x B | ran n n G x = B
7 6 simprbi G CycGrp x B | ran n n G x = B
8 n0 x B | ran n n G x = B g g x B | ran n n G x = B
9 7 8 sylib G CycGrp g g x B | ran n n G x = B
10 eqid ℤRHom Y = ℤRHom Y
11 simpl G CycGrp g x B | ran n n G x = B G CycGrp
12 simpr G CycGrp g x B | ran n n G x = B g x B | ran n n G x = B
13 eqid ran m ℤRHom Y m m G g = ran m ℤRHom Y m m G g
14 1 2 3 4 10 5 11 12 13 cygznlem3 G CycGrp g x B | ran n n G x = B G 𝑔 Y
15 9 14 exlimddv G CycGrp G 𝑔 Y