Metamath Proof Explorer


Theorem cygznlem2

Description: Lemma for cygzn . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses cygzn.b B = Base G
cygzn.n N = if B Fin B 0
cygzn.y Y = /N
cygzn.m · ˙ = G
cygzn.l L = ℤRHom Y
cygzn.e E = x B | ran n n · ˙ x = B
cygzn.g φ G CycGrp
cygzn.x φ X E
cygzn.f F = ran m L m m · ˙ X
Assertion cygznlem2 φ M F L M = M · ˙ X

Proof

Step Hyp Ref Expression
1 cygzn.b B = Base G
2 cygzn.n N = if B Fin B 0
3 cygzn.y Y = /N
4 cygzn.m · ˙ = G
5 cygzn.l L = ℤRHom Y
6 cygzn.e E = x B | ran n n · ˙ x = B
7 cygzn.g φ G CycGrp
8 cygzn.x φ X E
9 cygzn.f F = ran m L m m · ˙ X
10 fvexd φ m L m V
11 ovexd φ m m · ˙ X V
12 fveq2 m = M L m = L M
13 oveq1 m = M m · ˙ X = M · ˙ X
14 1 2 3 4 5 6 7 8 9 cygznlem2a φ F : Base Y B
15 14 ffund φ Fun F
16 9 10 11 12 13 15 fliftval φ M F L M = M · ˙ X