Metamath Proof Explorer


Theorem cygznlem3

Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygzn.b B = Base G
cygzn.n N = if B Fin B 0
cygzn.y Y = /N
cygzn.m · ˙ = G
cygzn.l L = ℤRHom Y
cygzn.e E = x B | ran n n · ˙ x = B
cygzn.g φ G CycGrp
cygzn.x φ X E
cygzn.f F = ran m L m m · ˙ X
Assertion cygznlem3 φ G 𝑔 Y

Proof

Step Hyp Ref Expression
1 cygzn.b B = Base G
2 cygzn.n N = if B Fin B 0
3 cygzn.y Y = /N
4 cygzn.m · ˙ = G
5 cygzn.l L = ℤRHom Y
6 cygzn.e E = x B | ran n n · ˙ x = B
7 cygzn.g φ G CycGrp
8 cygzn.x φ X E
9 cygzn.f F = ran m L m m · ˙ X
10 eqid Base Y = Base Y
11 eqid + Y = + Y
12 eqid + G = + G
13 hashcl B Fin B 0
14 13 adantl φ B Fin B 0
15 0nn0 0 0
16 15 a1i φ ¬ B Fin 0 0
17 14 16 ifclda φ if B Fin B 0 0
18 2 17 eqeltrid φ N 0
19 3 zncrng N 0 Y CRing
20 crngring Y CRing Y Ring
21 ringgrp Y Ring Y Grp
22 18 19 20 21 4syl φ Y Grp
23 cyggrp G CycGrp G Grp
24 7 23 syl φ G Grp
25 1 2 3 4 5 6 7 8 9 cygznlem2a φ F : Base Y B
26 3 10 5 znzrhfo N 0 L : onto Base Y
27 18 26 syl φ L : onto Base Y
28 foelrn L : onto Base Y a Base Y i a = L i
29 27 28 sylan φ a Base Y i a = L i
30 foelrn L : onto Base Y b Base Y j b = L j
31 27 30 sylan φ b Base Y j b = L j
32 29 31 anim12dan φ a Base Y b Base Y i a = L i j b = L j
33 reeanv i j a = L i b = L j i a = L i j b = L j
34 24 adantr φ i j G Grp
35 simprl φ i j i
36 simprr φ i j j
37 1 4 6 iscyggen X E X B ran n n · ˙ X = B
38 37 simplbi X E X B
39 8 38 syl φ X B
40 39 adantr φ i j X B
41 1 4 12 mulgdir G Grp i j X B i + j · ˙ X = i · ˙ X + G j · ˙ X
42 34 35 36 40 41 syl13anc φ i j i + j · ˙ X = i · ˙ X + G j · ˙ X
43 18 19 syl φ Y CRing
44 5 zrhrhm Y Ring L ring RingHom Y
45 rhmghm L ring RingHom Y L ring GrpHom Y
46 43 20 44 45 4syl φ L ring GrpHom Y
47 46 adantr φ i j L ring GrpHom Y
48 zringbas = Base ring
49 zringplusg + = + ring
50 48 49 11 ghmlin L ring GrpHom Y i j L i + j = L i + Y L j
51 47 35 36 50 syl3anc φ i j L i + j = L i + Y L j
52 51 fveq2d φ i j F L i + j = F L i + Y L j
53 zaddcl i j i + j
54 1 2 3 4 5 6 7 8 9 cygznlem2 φ i + j F L i + j = i + j · ˙ X
55 53 54 sylan2 φ i j F L i + j = i + j · ˙ X
56 52 55 eqtr3d φ i j F L i + Y L j = i + j · ˙ X
57 1 2 3 4 5 6 7 8 9 cygznlem2 φ i F L i = i · ˙ X
58 57 adantrr φ i j F L i = i · ˙ X
59 1 2 3 4 5 6 7 8 9 cygznlem2 φ j F L j = j · ˙ X
60 59 adantrl φ i j F L j = j · ˙ X
61 58 60 oveq12d φ i j F L i + G F L j = i · ˙ X + G j · ˙ X
62 42 56 61 3eqtr4d φ i j F L i + Y L j = F L i + G F L j
63 oveq12 a = L i b = L j a + Y b = L i + Y L j
64 63 fveq2d a = L i b = L j F a + Y b = F L i + Y L j
65 fveq2 a = L i F a = F L i
66 fveq2 b = L j F b = F L j
67 65 66 oveqan12d a = L i b = L j F a + G F b = F L i + G F L j
68 64 67 eqeq12d a = L i b = L j F a + Y b = F a + G F b F L i + Y L j = F L i + G F L j
69 62 68 syl5ibrcom φ i j a = L i b = L j F a + Y b = F a + G F b
70 69 rexlimdvva φ i j a = L i b = L j F a + Y b = F a + G F b
71 33 70 syl5bir φ i a = L i j b = L j F a + Y b = F a + G F b
72 71 imp φ i a = L i j b = L j F a + Y b = F a + G F b
73 32 72 syldan φ a Base Y b Base Y F a + Y b = F a + G F b
74 10 1 11 12 22 24 25 73 isghmd φ F Y GrpHom G
75 58 60 eqeq12d φ i j F L i = F L j i · ˙ X = j · ˙ X
76 1 2 3 4 5 6 7 8 cygznlem1 φ i j L i = L j i · ˙ X = j · ˙ X
77 75 76 bitr4d φ i j F L i = F L j L i = L j
78 77 biimpd φ i j F L i = F L j L i = L j
79 65 66 eqeqan12d a = L i b = L j F a = F b F L i = F L j
80 eqeq12 a = L i b = L j a = b L i = L j
81 79 80 imbi12d a = L i b = L j F a = F b a = b F L i = F L j L i = L j
82 78 81 syl5ibrcom φ i j a = L i b = L j F a = F b a = b
83 82 rexlimdvva φ i j a = L i b = L j F a = F b a = b
84 33 83 syl5bir φ i a = L i j b = L j F a = F b a = b
85 84 imp φ i a = L i j b = L j F a = F b a = b
86 32 85 syldan φ a Base Y b Base Y F a = F b a = b
87 86 ralrimivva φ a Base Y b Base Y F a = F b a = b
88 dff13 F : Base Y 1-1 B F : Base Y B a Base Y b Base Y F a = F b a = b
89 25 87 88 sylanbrc φ F : Base Y 1-1 B
90 1 4 6 iscyggen2 G Grp X E X B z B n z = n · ˙ X
91 24 90 syl φ X E X B z B n z = n · ˙ X
92 8 91 mpbid φ X B z B n z = n · ˙ X
93 92 simprd φ z B n z = n · ˙ X
94 oveq1 n = j n · ˙ X = j · ˙ X
95 94 eqeq2d n = j z = n · ˙ X z = j · ˙ X
96 95 cbvrexvw n z = n · ˙ X j z = j · ˙ X
97 27 adantr φ z B L : onto Base Y
98 fof L : onto Base Y L : Base Y
99 97 98 syl φ z B L : Base Y
100 99 ffvelrnda φ z B j L j Base Y
101 59 adantlr φ z B j F L j = j · ˙ X
102 101 eqcomd φ z B j j · ˙ X = F L j
103 fveq2 a = L j F a = F L j
104 103 rspceeqv L j Base Y j · ˙ X = F L j a Base Y j · ˙ X = F a
105 100 102 104 syl2anc φ z B j a Base Y j · ˙ X = F a
106 eqeq1 z = j · ˙ X z = F a j · ˙ X = F a
107 106 rexbidv z = j · ˙ X a Base Y z = F a a Base Y j · ˙ X = F a
108 105 107 syl5ibrcom φ z B j z = j · ˙ X a Base Y z = F a
109 108 rexlimdva φ z B j z = j · ˙ X a Base Y z = F a
110 96 109 syl5bi φ z B n z = n · ˙ X a Base Y z = F a
111 110 ralimdva φ z B n z = n · ˙ X z B a Base Y z = F a
112 93 111 mpd φ z B a Base Y z = F a
113 dffo3 F : Base Y onto B F : Base Y B z B a Base Y z = F a
114 25 112 113 sylanbrc φ F : Base Y onto B
115 df-f1o F : Base Y 1-1 onto B F : Base Y 1-1 B F : Base Y onto B
116 89 114 115 sylanbrc φ F : Base Y 1-1 onto B
117 10 1 isgim F Y GrpIso G F Y GrpHom G F : Base Y 1-1 onto B
118 74 116 117 sylanbrc φ F Y GrpIso G
119 brgici F Y GrpIso G Y 𝑔 G
120 gicsym Y 𝑔 G G 𝑔 Y
121 118 119 120 3syl φ G 𝑔 Y