Metamath Proof Explorer


Theorem d1mat2pmat

Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019)

Ref Expression
Hypotheses d1mat2pmat.t T = N matToPolyMat R
d1mat2pmat.b B = Base N Mat R
d1mat2pmat.p P = Poly 1 R
d1mat2pmat.s S = algSc P
Assertion d1mat2pmat R V N = A A V M B T M = A A S A M A

Proof

Step Hyp Ref Expression
1 d1mat2pmat.t T = N matToPolyMat R
2 d1mat2pmat.b B = Base N Mat R
3 d1mat2pmat.p P = Poly 1 R
4 d1mat2pmat.s S = algSc P
5 snfi A Fin
6 eleq1 N = A N Fin A Fin
7 5 6 mpbiri N = A N Fin
8 7 adantr N = A A V N Fin
9 8 3ad2ant2 R V N = A A V M B N Fin
10 simp1 R V N = A A V M B R V
11 simp3 R V N = A A V M B M B
12 eqid N Mat R = N Mat R
13 1 12 2 3 4 mat2pmatval N Fin R V M B T M = i N , j N S i M j
14 9 10 11 13 syl3anc R V N = A A V M B T M = i N , j N S i M j
15 id A V A V
16 fvexd A V S A M A V
17 15 15 16 3jca A V A V A V S A M A V
18 17 adantl N = A A V A V A V S A M A V
19 18 3ad2ant2 R V N = A A V M B A V A V S A M A V
20 eqid i A , j A S i M j = i A , j A S i M j
21 fvoveq1 i = A S i M j = S A M j
22 oveq2 j = A A M j = A M A
23 22 fveq2d j = A S A M j = S A M A
24 20 21 23 mposn A V A V S A M A V i A , j A S i M j = A A S A M A
25 19 24 syl R V N = A A V M B i A , j A S i M j = A A S A M A
26 mpoeq12 N = A N = A i N , j N S i M j = i A , j A S i M j
27 26 eqeq1d N = A N = A i N , j N S i M j = A A S A M A i A , j A S i M j = A A S A M A
28 27 anidms N = A i N , j N S i M j = A A S A M A i A , j A S i M j = A A S A M A
29 28 adantr N = A A V i N , j N S i M j = A A S A M A i A , j A S i M j = A A S A M A
30 29 3ad2ant2 R V N = A A V M B i N , j N S i M j = A A S A M A i A , j A S i M j = A A S A M A
31 25 30 mpbird R V N = A A V M B i N , j N S i M j = A A S A M A
32 14 31 eqtrd R V N = A A V M B T M = A A S A M A