Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|
2 |
|
dalawlem.j |
|
3 |
|
dalawlem.m |
|
4 |
|
dalawlem.a |
|
5 |
|
simp11 |
|
6 |
|
simp12 |
|
7 |
5
|
hllatd |
|
8 |
|
simp22 |
|
9 |
|
simp32 |
|
10 |
|
eqid |
|
11 |
10 2 4
|
hlatjcl |
|
12 |
5 8 9 11
|
syl3anc |
|
13 |
|
simp21 |
|
14 |
|
simp31 |
|
15 |
10 2 4
|
hlatjcl |
|
16 |
5 13 14 15
|
syl3anc |
|
17 |
10 3
|
latmcom |
|
18 |
7 12 16 17
|
syl3anc |
|
19 |
2 4
|
hlatjcom |
|
20 |
5 8 13 19
|
syl3anc |
|
21 |
6 18 20
|
3brtr4d |
|
22 |
|
simp13 |
|
23 |
18 22
|
eqbrtrd |
|
24 |
|
simp23 |
|
25 |
|
simp33 |
|
26 |
1 2 3 4
|
dalawlem3 |
|
27 |
5 21 23 8 13 24 9 14 25 26
|
syl333anc |
|
28 |
2 4
|
hlatjcom |
|
29 |
5 13 24 28
|
syl3anc |
|
30 |
2 4
|
hlatjcom |
|
31 |
5 14 25 30
|
syl3anc |
|
32 |
29 31
|
oveq12d |
|
33 |
2 4
|
hlatjcom |
|
34 |
5 24 8 33
|
syl3anc |
|
35 |
2 4
|
hlatjcom |
|
36 |
5 25 9 35
|
syl3anc |
|
37 |
34 36
|
oveq12d |
|
38 |
32 37
|
oveq12d |
|
39 |
10 2 4
|
hlatjcl |
|
40 |
5 24 13 39
|
syl3anc |
|
41 |
10 2 4
|
hlatjcl |
|
42 |
5 25 14 41
|
syl3anc |
|
43 |
10 3
|
latmcl |
|
44 |
7 40 42 43
|
syl3anc |
|
45 |
10 2 4
|
hlatjcl |
|
46 |
5 8 24 45
|
syl3anc |
|
47 |
10 2 4
|
hlatjcl |
|
48 |
5 9 25 47
|
syl3anc |
|
49 |
10 3
|
latmcl |
|
50 |
7 46 48 49
|
syl3anc |
|
51 |
10 2
|
latjcom |
|
52 |
7 44 50 51
|
syl3anc |
|
53 |
38 52
|
eqtrd |
|
54 |
27 53
|
breqtrd |
|