Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|
2 |
|
dalawlem.j |
|
3 |
|
dalawlem.m |
|
4 |
|
dalawlem.a |
|
5 |
|
eqid |
|
6 |
|
simp11 |
|
7 |
6
|
hllatd |
|
8 |
|
simp21 |
|
9 |
|
simp22 |
|
10 |
5 2 4
|
hlatjcl |
|
11 |
6 8 9 10
|
syl3anc |
|
12 |
|
simp31 |
|
13 |
|
simp32 |
|
14 |
5 2 4
|
hlatjcl |
|
15 |
6 12 13 14
|
syl3anc |
|
16 |
5 3
|
latmcl |
|
17 |
7 11 15 16
|
syl3anc |
|
18 |
5 4
|
atbase |
|
19 |
13 18
|
syl |
|
20 |
5 2
|
latjcl |
|
21 |
7 11 19 20
|
syl3anc |
|
22 |
5 4
|
atbase |
|
23 |
12 22
|
syl |
|
24 |
5 3
|
latmcl |
|
25 |
7 21 23 24
|
syl3anc |
|
26 |
5 2
|
latjcl |
|
27 |
7 11 23 26
|
syl3anc |
|
28 |
5 3
|
latmcl |
|
29 |
7 27 19 28
|
syl3anc |
|
30 |
5 2
|
latjcl |
|
31 |
7 25 29 30
|
syl3anc |
|
32 |
|
simp23 |
|
33 |
5 2 4
|
hlatjcl |
|
34 |
6 9 32 33
|
syl3anc |
|
35 |
|
simp33 |
|
36 |
5 2 4
|
hlatjcl |
|
37 |
6 13 35 36
|
syl3anc |
|
38 |
5 3
|
latmcl |
|
39 |
7 34 37 38
|
syl3anc |
|
40 |
5 2 4
|
hlatjcl |
|
41 |
6 32 8 40
|
syl3anc |
|
42 |
5 2 4
|
hlatjcl |
|
43 |
6 35 12 42
|
syl3anc |
|
44 |
5 3
|
latmcl |
|
45 |
7 41 43 44
|
syl3anc |
|
46 |
5 2
|
latjcl |
|
47 |
7 39 45 46
|
syl3anc |
|
48 |
1 2 3 4
|
dalawlem2 |
|
49 |
6 8 9 12 13 48
|
syl122anc |
|
50 |
2 4
|
hlatjcom |
|
51 |
6 8 9 50
|
syl3anc |
|
52 |
51
|
oveq1d |
|
53 |
2 4
|
hlatj32 |
|
54 |
6 9 8 13 53
|
syl13anc |
|
55 |
52 54
|
eqtrd |
|
56 |
55
|
oveq1d |
|
57 |
1 2 3 4
|
dalawlem3 |
|
58 |
56 57
|
eqbrtrd |
|
59 |
2 4
|
hlatj32 |
|
60 |
6 8 9 12 59
|
syl13anc |
|
61 |
60
|
oveq1d |
|
62 |
1 2 3 4
|
dalawlem4 |
|
63 |
61 62
|
eqbrtrd |
|
64 |
5 1 2
|
latjle12 |
|
65 |
7 25 29 47 64
|
syl13anc |
|
66 |
58 63 65
|
mpbi2and |
|
67 |
5 1 7 17 31 47 49 66
|
lattrd |
|