Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|
2 |
|
dalawlem.j |
|
3 |
|
dalawlem.m |
|
4 |
|
dalawlem.a |
|
5 |
|
eqid |
|
6 |
|
simp11 |
|
7 |
6
|
hllatd |
|
8 |
|
simp21 |
|
9 |
|
simp22 |
|
10 |
5 2 4
|
hlatjcl |
|
11 |
6 8 9 10
|
syl3anc |
|
12 |
|
simp31 |
|
13 |
5 4
|
atbase |
|
14 |
12 13
|
syl |
|
15 |
5 2
|
latjcl |
|
16 |
7 11 14 15
|
syl3anc |
|
17 |
|
simp32 |
|
18 |
5 4
|
atbase |
|
19 |
17 18
|
syl |
|
20 |
5 3
|
latmcl |
|
21 |
7 16 19 20
|
syl3anc |
|
22 |
|
simp23 |
|
23 |
5 2 4
|
hlatjcl |
|
24 |
6 9 22 23
|
syl3anc |
|
25 |
|
simp33 |
|
26 |
5 2 4
|
hlatjcl |
|
27 |
6 17 25 26
|
syl3anc |
|
28 |
5 3
|
latmcl |
|
29 |
7 24 27 28
|
syl3anc |
|
30 |
5 2 4
|
hlatjcl |
|
31 |
6 22 8 30
|
syl3anc |
|
32 |
5 2 4
|
hlatjcl |
|
33 |
6 25 12 32
|
syl3anc |
|
34 |
5 3
|
latmcl |
|
35 |
7 31 33 34
|
syl3anc |
|
36 |
5 2
|
latjcl |
|
37 |
7 29 35 36
|
syl3anc |
|
38 |
|
hlol |
|
39 |
6 38
|
syl |
|
40 |
5 2 4
|
hlatjcl |
|
41 |
6 8 12 40
|
syl3anc |
|
42 |
5 4
|
atbase |
|
43 |
9 42
|
syl |
|
44 |
5 2
|
latjcl |
|
45 |
7 41 43 44
|
syl3anc |
|
46 |
5 2 4
|
hlatjcl |
|
47 |
6 9 17 46
|
syl3anc |
|
48 |
5 3
|
latmassOLD |
|
49 |
39 45 47 19 48
|
syl13anc |
|
50 |
2 4
|
hlatj32 |
|
51 |
6 8 12 9 50
|
syl13anc |
|
52 |
1 2 4
|
hlatlej2 |
|
53 |
6 9 17 52
|
syl3anc |
|
54 |
5 1 3
|
latleeqm2 |
|
55 |
7 19 47 54
|
syl3anc |
|
56 |
53 55
|
mpbid |
|
57 |
51 56
|
oveq12d |
|
58 |
49 57
|
eqtr2d |
|
59 |
|
simp12 |
|
60 |
5 3
|
latmcl |
|
61 |
7 41 47 60
|
syl3anc |
|
62 |
5 1 2
|
latjlej1 |
|
63 |
7 61 24 43 62
|
syl13anc |
|
64 |
59 63
|
mpd |
|
65 |
1 2 4
|
hlatlej1 |
|
66 |
6 9 17 65
|
syl3anc |
|
67 |
5 1 2 3 4
|
atmod4i1 |
|
68 |
6 9 41 47 66 67
|
syl131anc |
|
69 |
2 4
|
hlatj32 |
|
70 |
6 9 22 9 69
|
syl13anc |
|
71 |
5 2
|
latjidm |
|
72 |
7 43 71
|
syl2anc |
|
73 |
72
|
oveq1d |
|
74 |
70 73
|
eqtrd |
|
75 |
64 68 74
|
3brtr3d |
|
76 |
1 2 4
|
hlatlej1 |
|
77 |
6 17 25 76
|
syl3anc |
|
78 |
5 3
|
latmcl |
|
79 |
7 45 47 78
|
syl3anc |
|
80 |
5 1 3
|
latmlem12 |
|
81 |
7 79 24 19 27 80
|
syl122anc |
|
82 |
75 77 81
|
mp2and |
|
83 |
58 82
|
eqbrtrd |
|
84 |
5 1 2
|
latlej1 |
|
85 |
7 29 35 84
|
syl3anc |
|
86 |
5 1 7 21 29 37 83 85
|
lattrd |
|