Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|
2 |
|
dalawlem.j |
|
3 |
|
dalawlem.m |
|
4 |
|
dalawlem.a |
|
5 |
|
simp11 |
|
6 |
5
|
hllatd |
|
7 |
|
simp22 |
|
8 |
|
simp32 |
|
9 |
|
eqid |
|
10 |
9 2 4
|
hlatjcl |
|
11 |
5 7 8 10
|
syl3anc |
|
12 |
|
simp21 |
|
13 |
|
simp31 |
|
14 |
9 2 4
|
hlatjcl |
|
15 |
5 12 13 14
|
syl3anc |
|
16 |
9 3
|
latmcom |
|
17 |
6 11 15 16
|
syl3anc |
|
18 |
|
simp12 |
|
19 |
|
simp23 |
|
20 |
2 4
|
hlatjcom |
|
21 |
5 19 12 20
|
syl3anc |
|
22 |
18 21
|
breqtrd |
|
23 |
17 22
|
eqbrtrd |
|
24 |
|
simp13 |
|
25 |
17 24
|
eqbrtrd |
|
26 |
|
simp33 |
|
27 |
1 2 3 4
|
dalawlem8 |
|
28 |
5 23 25 7 12 19 8 13 26 27
|
syl333anc |
|
29 |
2 4
|
hlatjcom |
|
30 |
5 12 7 29
|
syl3anc |
|
31 |
2 4
|
hlatjcom |
|
32 |
5 13 8 31
|
syl3anc |
|
33 |
30 32
|
oveq12d |
|
34 |
9 2 4
|
hlatjcl |
|
35 |
5 7 19 34
|
syl3anc |
|
36 |
9 2 4
|
hlatjcl |
|
37 |
5 8 26 36
|
syl3anc |
|
38 |
9 3
|
latmcl |
|
39 |
6 35 37 38
|
syl3anc |
|
40 |
9 2 4
|
hlatjcl |
|
41 |
5 19 12 40
|
syl3anc |
|
42 |
9 2 4
|
hlatjcl |
|
43 |
5 26 13 42
|
syl3anc |
|
44 |
9 3
|
latmcl |
|
45 |
6 41 43 44
|
syl3anc |
|
46 |
9 2
|
latjcom |
|
47 |
6 39 45 46
|
syl3anc |
|
48 |
2 4
|
hlatjcom |
|
49 |
5 26 13 48
|
syl3anc |
|
50 |
21 49
|
oveq12d |
|
51 |
2 4
|
hlatjcom |
|
52 |
5 7 19 51
|
syl3anc |
|
53 |
2 4
|
hlatjcom |
|
54 |
5 8 26 53
|
syl3anc |
|
55 |
52 54
|
oveq12d |
|
56 |
50 55
|
oveq12d |
|
57 |
47 56
|
eqtrd |
|
58 |
28 33 57
|
3brtr4d |
|