Metamath Proof Explorer


Theorem dalem10

Description: Lemma for dath . Atom D belongs to the axis of perspectivity X . (Contributed by NM, 19-Jul-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalem10.m ˙ = meet K
dalem10.o O = LPlanes K
dalem10.y Y = P ˙ Q ˙ R
dalem10.z Z = S ˙ T ˙ U
dalem10.x X = Y ˙ Z
dalem10.d D = P ˙ Q ˙ S ˙ T
Assertion dalem10 φ D ˙ X

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalem10.m ˙ = meet K
6 dalem10.o O = LPlanes K
7 dalem10.y Y = P ˙ Q ˙ R
8 dalem10.z Z = S ˙ T ˙ U
9 dalem10.x X = Y ˙ Z
10 dalem10.d D = P ˙ Q ˙ S ˙ T
11 1 dalemkelat φ K Lat
12 1 3 4 dalempjqeb φ P ˙ Q Base K
13 1 4 dalemreb φ R Base K
14 eqid Base K = Base K
15 14 2 3 latlej1 K Lat P ˙ Q Base K R Base K P ˙ Q ˙ P ˙ Q ˙ R
16 11 12 13 15 syl3anc φ P ˙ Q ˙ P ˙ Q ˙ R
17 1 3 4 dalemsjteb φ S ˙ T Base K
18 1 4 dalemueb φ U Base K
19 14 2 3 latlej1 K Lat S ˙ T Base K U Base K S ˙ T ˙ S ˙ T ˙ U
20 11 17 18 19 syl3anc φ S ˙ T ˙ S ˙ T ˙ U
21 1 6 dalemyeb φ Y Base K
22 7 21 eqeltrrid φ P ˙ Q ˙ R Base K
23 1 dalemzeo φ Z O
24 14 6 lplnbase Z O Z Base K
25 23 24 syl φ Z Base K
26 8 25 eqeltrrid φ S ˙ T ˙ U Base K
27 14 2 5 latmlem12 K Lat P ˙ Q Base K P ˙ Q ˙ R Base K S ˙ T Base K S ˙ T ˙ U Base K P ˙ Q ˙ P ˙ Q ˙ R S ˙ T ˙ S ˙ T ˙ U P ˙ Q ˙ S ˙ T ˙ P ˙ Q ˙ R ˙ S ˙ T ˙ U
28 11 12 22 17 26 27 syl122anc φ P ˙ Q ˙ P ˙ Q ˙ R S ˙ T ˙ S ˙ T ˙ U P ˙ Q ˙ S ˙ T ˙ P ˙ Q ˙ R ˙ S ˙ T ˙ U
29 16 20 28 mp2and φ P ˙ Q ˙ S ˙ T ˙ P ˙ Q ˙ R ˙ S ˙ T ˙ U
30 7 8 oveq12i Y ˙ Z = P ˙ Q ˙ R ˙ S ˙ T ˙ U
31 9 30 eqtri X = P ˙ Q ˙ R ˙ S ˙ T ˙ U
32 29 10 31 3brtr4g φ D ˙ X