Metamath Proof Explorer


Theorem dalem14

Description: Lemma for dath . Planes Y and Z form a 3-dimensional space (when they are different). (Contributed by NM, 22-Jul-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalem14.o O = LPlanes K
dalem14.v V = LVols K
dalem14.y Y = P ˙ Q ˙ R
dalem14.z Z = S ˙ T ˙ U
dalem14.w W = Y ˙ C
Assertion dalem14 φ Y Z Y ˙ Z V

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalem14.o O = LPlanes K
6 dalem14.v V = LVols K
7 dalem14.y Y = P ˙ Q ˙ R
8 dalem14.z Z = S ˙ T ˙ U
9 dalem14.w W = Y ˙ C
10 1 2 3 4 5 7 8 9 dalem13 φ Y Z Y ˙ Z = W
11 1 2 3 4 5 6 7 8 9 dalem9 φ Y Z W V
12 10 11 eqeltrd φ Y Z Y ˙ Z V