Metamath Proof Explorer


Theorem dalem18

Description: Lemma for dath . Show that a dummy atom c exists outside of the Y and Z planes (when those planes are equal). This requires that the projective space be 3-dimensional. (Desargues's theorem does not always hold in 2 dimensions.) (Contributed by NM, 29-Jul-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalem18.y Y = P ˙ Q ˙ R
Assertion dalem18 φ c A ¬ c ˙ Y

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalem18.y Y = P ˙ Q ˙ R
6 1 dalemkehl φ K HL
7 1 dalempea φ P A
8 1 dalemqea φ Q A
9 1 dalemrea φ R A
10 3 2 4 3dim3 K HL P A Q A R A c A ¬ c ˙ P ˙ Q ˙ R
11 6 7 8 9 10 syl13anc φ c A ¬ c ˙ P ˙ Q ˙ R
12 5 breq2i c ˙ Y c ˙ P ˙ Q ˙ R
13 12 notbii ¬ c ˙ Y ¬ c ˙ P ˙ Q ˙ R
14 13 rexbii c A ¬ c ˙ Y c A ¬ c ˙ P ˙ Q ˙ R
15 11 14 sylibr φ c A ¬ c ˙ Y