Metamath Proof Explorer


Theorem dalem28

Description: Lemma for dath . Lemma dalem27 expressed differently. (Contributed by NM, 4-Aug-2012)

Ref Expression
Hypotheses dalem.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalem.l ˙ = K
dalem.j ˙ = join K
dalem.a A = Atoms K
dalem.ps ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
dalem23.m ˙ = meet K
dalem23.o O = LPlanes K
dalem23.y Y = P ˙ Q ˙ R
dalem23.z Z = S ˙ T ˙ U
dalem23.g G = c ˙ P ˙ d ˙ S
Assertion dalem28 φ Y = Z ψ P ˙ G ˙ c

Proof

Step Hyp Ref Expression
1 dalem.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalem.l ˙ = K
3 dalem.j ˙ = join K
4 dalem.a A = Atoms K
5 dalem.ps ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
6 dalem23.m ˙ = meet K
7 dalem23.o O = LPlanes K
8 dalem23.y Y = P ˙ Q ˙ R
9 dalem23.z Z = S ˙ T ˙ U
10 dalem23.g G = c ˙ P ˙ d ˙ S
11 1 2 3 4 5 6 7 8 9 10 dalem27 φ Y = Z ψ c ˙ G ˙ P
12 1 dalemkehl φ K HL
13 12 3ad2ant1 φ Y = Z ψ K HL
14 5 dalemccea ψ c A
15 14 3ad2ant3 φ Y = Z ψ c A
16 1 dalempea φ P A
17 16 3ad2ant1 φ Y = Z ψ P A
18 1 2 3 4 5 6 7 8 9 10 dalem23 φ Y = Z ψ G A
19 1 2 3 4 5 6 7 8 9 10 dalem25 φ Y = Z ψ c G
20 2 3 4 hlatexch1 K HL c A P A G A c G c ˙ G ˙ P P ˙ G ˙ c
21 13 15 17 18 19 20 syl131anc φ Y = Z ψ c ˙ G ˙ P P ˙ G ˙ c
22 11 21 mpd φ Y = Z ψ P ˙ G ˙ c