Metamath Proof Explorer


Theorem dalem45

Description: Lemma for dath . Dummy center of perspectivity c is not on the line G H . (Contributed by NM, 16-Aug-2012)

Ref Expression
Hypotheses dalem.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalem.l ˙ = K
dalem.j ˙ = join K
dalem.a A = Atoms K
dalem.ps ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
dalem44.m ˙ = meet K
dalem44.o O = LPlanes K
dalem44.y Y = P ˙ Q ˙ R
dalem44.z Z = S ˙ T ˙ U
dalem44.g G = c ˙ P ˙ d ˙ S
dalem44.h H = c ˙ Q ˙ d ˙ T
dalem44.i I = c ˙ R ˙ d ˙ U
Assertion dalem45 φ Y = Z ψ ¬ c ˙ G ˙ H

Proof

Step Hyp Ref Expression
1 dalem.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalem.l ˙ = K
3 dalem.j ˙ = join K
4 dalem.a A = Atoms K
5 dalem.ps ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
6 dalem44.m ˙ = meet K
7 dalem44.o O = LPlanes K
8 dalem44.y Y = P ˙ Q ˙ R
9 dalem44.z Z = S ˙ T ˙ U
10 dalem44.g G = c ˙ P ˙ d ˙ S
11 dalem44.h H = c ˙ Q ˙ d ˙ T
12 dalem44.i I = c ˙ R ˙ d ˙ U
13 1 dalemkelat φ K Lat
14 13 3ad2ant1 φ Y = Z ψ K Lat
15 5 4 dalemcceb ψ c Base K
16 15 3ad2ant3 φ Y = Z ψ c Base K
17 1 dalemkehl φ K HL
18 17 3ad2ant1 φ Y = Z ψ K HL
19 1 2 3 4 5 6 7 8 9 10 dalem23 φ Y = Z ψ G A
20 1 2 3 4 5 6 7 8 9 11 dalem29 φ Y = Z ψ H A
21 eqid Base K = Base K
22 21 3 4 hlatjcl K HL G A H A G ˙ H Base K
23 18 19 20 22 syl3anc φ Y = Z ψ G ˙ H Base K
24 1 2 3 4 5 6 7 8 9 12 dalem34 φ Y = Z ψ I A
25 21 4 atbase I A I Base K
26 24 25 syl φ Y = Z ψ I Base K
27 1 2 3 4 5 6 7 8 9 10 11 12 dalem44 φ Y = Z ψ ¬ c ˙ G ˙ H ˙ I
28 21 2 3 latnlej2l K Lat c Base K G ˙ H Base K I Base K ¬ c ˙ G ˙ H ˙ I ¬ c ˙ G ˙ H
29 14 16 23 26 27 28 syl131anc φ Y = Z ψ ¬ c ˙ G ˙ H