Metamath Proof Explorer


Theorem dalem53

Description: Lemma for dath . The auxliary axis of perspectivity B is a line (analogous to the actual axis of perspectivity X in dalem15 . (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalem.l ˙ = K
dalem.j ˙ = join K
dalem.a A = Atoms K
dalem.ps ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
dalem53.m ˙ = meet K
dalem53.n N = LLines K
dalem53.o O = LPlanes K
dalem53.y Y = P ˙ Q ˙ R
dalem53.z Z = S ˙ T ˙ U
dalem53.g G = c ˙ P ˙ d ˙ S
dalem53.h H = c ˙ Q ˙ d ˙ T
dalem53.i I = c ˙ R ˙ d ˙ U
dalem53.b1 B = G ˙ H ˙ I ˙ Y
Assertion dalem53 φ Y = Z ψ B N

Proof

Step Hyp Ref Expression
1 dalem.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalem.l ˙ = K
3 dalem.j ˙ = join K
4 dalem.a A = Atoms K
5 dalem.ps ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
6 dalem53.m ˙ = meet K
7 dalem53.n N = LLines K
8 dalem53.o O = LPlanes K
9 dalem53.y Y = P ˙ Q ˙ R
10 dalem53.z Z = S ˙ T ˙ U
11 dalem53.g G = c ˙ P ˙ d ˙ S
12 dalem53.h H = c ˙ Q ˙ d ˙ T
13 dalem53.i I = c ˙ R ˙ d ˙ U
14 dalem53.b1 B = G ˙ H ˙ I ˙ Y
15 1 2 3 4 5 6 8 9 10 11 12 13 dalem51 φ Y = Z ψ K HL c A G A H A I A P A Q A R A G ˙ H ˙ I O Y O ¬ c ˙ G ˙ H ¬ c ˙ H ˙ I ¬ c ˙ I ˙ G ¬ c ˙ P ˙ Q ¬ c ˙ Q ˙ R ¬ c ˙ R ˙ P c ˙ G ˙ P c ˙ H ˙ Q c ˙ I ˙ R G ˙ H ˙ I Y
16 eqid Base K = Base K
17 16 4 atbase c A c Base K
18 17 anim2i K HL c A K HL c Base K
19 18 3anim1i K HL c A G A H A I A P A Q A R A K HL c Base K G A H A I A P A Q A R A
20 biid K HL c Base K G A H A I A P A Q A R A G ˙ H ˙ I O Y O ¬ c ˙ G ˙ H ¬ c ˙ H ˙ I ¬ c ˙ I ˙ G ¬ c ˙ P ˙ Q ¬ c ˙ Q ˙ R ¬ c ˙ R ˙ P c ˙ G ˙ P c ˙ H ˙ Q c ˙ I ˙ R K HL c Base K G A H A I A P A Q A R A G ˙ H ˙ I O Y O ¬ c ˙ G ˙ H ¬ c ˙ H ˙ I ¬ c ˙ I ˙ G ¬ c ˙ P ˙ Q ¬ c ˙ Q ˙ R ¬ c ˙ R ˙ P c ˙ G ˙ P c ˙ H ˙ Q c ˙ I ˙ R
21 eqid G ˙ H ˙ I = G ˙ H ˙ I
22 20 2 3 4 6 7 8 21 9 14 dalem15 K HL c Base K G A H A I A P A Q A R A G ˙ H ˙ I O Y O ¬ c ˙ G ˙ H ¬ c ˙ H ˙ I ¬ c ˙ I ˙ G ¬ c ˙ P ˙ Q ¬ c ˙ Q ˙ R ¬ c ˙ R ˙ P c ˙ G ˙ P c ˙ H ˙ Q c ˙ I ˙ R G ˙ H ˙ I Y B N
23 19 22 syl3anl1 K HL c A G A H A I A P A Q A R A G ˙ H ˙ I O Y O ¬ c ˙ G ˙ H ¬ c ˙ H ˙ I ¬ c ˙ I ˙ G ¬ c ˙ P ˙ Q ¬ c ˙ Q ˙ R ¬ c ˙ R ˙ P c ˙ G ˙ P c ˙ H ˙ Q c ˙ I ˙ R G ˙ H ˙ I Y B N
24 15 23 syl φ Y = Z ψ B N