Metamath Proof Explorer


Theorem dalemcceb

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses da.ps0 ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
da.a1 A = Atoms K
Assertion dalemcceb ψ c Base K

Proof

Step Hyp Ref Expression
1 da.ps0 ψ c A d A ¬ c ˙ Y d c ¬ d ˙ Y C ˙ c ˙ d
2 da.a1 A = Atoms K
3 1 dalemccea ψ c A
4 eqid Base K = Base K
5 4 2 atbase c A c Base K
6 3 5 syl ψ c Base K