Metamath Proof Explorer


Theorem dalemcceb

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses da.ps0 ψcAdA¬c˙Ydc¬d˙YC˙c˙d
da.a1 A=AtomsK
Assertion dalemcceb ψcBaseK

Proof

Step Hyp Ref Expression
1 da.ps0 ψcAdA¬c˙Ydc¬d˙YC˙c˙d
2 da.a1 A=AtomsK
3 1 dalemccea ψcA
4 eqid BaseK=BaseK
5 4 2 atbase cAcBaseK
6 3 5 syl ψcBaseK