Metamath Proof Explorer


Theorem dalemeea

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalemeea.m ˙ = meet K
dalemeea.o O = LPlanes K
dalemeea.y Y = P ˙ Q ˙ R
dalemeea.z Z = S ˙ T ˙ U
dalemeea.e E = Q ˙ R ˙ T ˙ U
Assertion dalemeea φ E A

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalemeea.m ˙ = meet K
6 dalemeea.o O = LPlanes K
7 dalemeea.y Y = P ˙ Q ˙ R
8 dalemeea.z Z = S ˙ T ˙ U
9 dalemeea.e E = Q ˙ R ˙ T ˙ U
10 1 2 3 4 7 8 dalemrot φ K HL C Base K Q A R A P A T A U A S A Q ˙ R ˙ P O T ˙ U ˙ S O ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ P ˙ Q ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S ¬ C ˙ S ˙ T C ˙ Q ˙ T C ˙ R ˙ U C ˙ P ˙ S
11 biid K HL C Base K Q A R A P A T A U A S A Q ˙ R ˙ P O T ˙ U ˙ S O ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ P ˙ Q ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S ¬ C ˙ S ˙ T C ˙ Q ˙ T C ˙ R ˙ U C ˙ P ˙ S K HL C Base K Q A R A P A T A U A S A Q ˙ R ˙ P O T ˙ U ˙ S O ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ P ˙ Q ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S ¬ C ˙ S ˙ T C ˙ Q ˙ T C ˙ R ˙ U C ˙ P ˙ S
12 eqid Q ˙ R ˙ P = Q ˙ R ˙ P
13 eqid T ˙ U ˙ S = T ˙ U ˙ S
14 11 2 3 4 5 6 12 13 9 dalemdea K HL C Base K Q A R A P A T A U A S A Q ˙ R ˙ P O T ˙ U ˙ S O ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ P ˙ Q ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S ¬ C ˙ S ˙ T C ˙ Q ˙ T C ˙ R ˙ U C ˙ P ˙ S E A
15 10 14 syl φ E A