Metamath Proof Explorer


Theorem dalemply

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalempnes.o O = LPlanes K
dalempnes.y Y = P ˙ Q ˙ R
Assertion dalemply φ P ˙ Y

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalempnes.o O = LPlanes K
6 dalempnes.y Y = P ˙ Q ˙ R
7 1 dalemkelat φ K Lat
8 1 4 dalempeb φ P Base K
9 1 dalemkehl φ K HL
10 1 dalemqea φ Q A
11 1 dalemrea φ R A
12 eqid Base K = Base K
13 12 3 4 hlatjcl K HL Q A R A Q ˙ R Base K
14 9 10 11 13 syl3anc φ Q ˙ R Base K
15 12 2 3 latlej1 K Lat P Base K Q ˙ R Base K P ˙ P ˙ Q ˙ R
16 7 8 14 15 syl3anc φ P ˙ P ˙ Q ˙ R
17 1 dalempea φ P A
18 3 4 hlatjass K HL P A Q A R A P ˙ Q ˙ R = P ˙ Q ˙ R
19 9 17 10 11 18 syl13anc φ P ˙ Q ˙ R = P ˙ Q ˙ R
20 16 19 breqtrrd φ P ˙ P ˙ Q ˙ R
21 20 6 breqtrrdi φ P ˙ Y