Metamath Proof Explorer


Theorem dalempnes

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalempnes.o O = LPlanes K
dalempnes.y Y = P ˙ Q ˙ R
Assertion dalempnes φ P S

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalempnes.o O = LPlanes K
6 dalempnes.y Y = P ˙ Q ˙ R
7 1 dalemkelat φ K Lat
8 1 4 dalemceb φ C Base K
9 1 4 dalemseb φ S Base K
10 1 4 dalemteb φ T Base K
11 simp321 K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U ¬ C ˙ S ˙ T
12 1 11 sylbi φ ¬ C ˙ S ˙ T
13 eqid Base K = Base K
14 13 2 3 latnlej2l K Lat C Base K S Base K T Base K ¬ C ˙ S ˙ T ¬ C ˙ S
15 7 8 9 10 12 14 syl131anc φ ¬ C ˙ S
16 1 dalemclpjs φ C ˙ P ˙ S
17 oveq1 P = S P ˙ S = S ˙ S
18 17 breq2d P = S C ˙ P ˙ S C ˙ S ˙ S
19 16 18 syl5ibcom φ P = S C ˙ S ˙ S
20 1 dalemkehl φ K HL
21 1 dalemsea φ S A
22 3 4 hlatjidm K HL S A S ˙ S = S
23 20 21 22 syl2anc φ S ˙ S = S
24 23 breq2d φ C ˙ S ˙ S C ˙ S
25 19 24 sylibd φ P = S C ˙ S
26 25 necon3bd φ ¬ C ˙ S P S
27 15 26 mpd φ P S