Metamath Proof Explorer


Theorem dalemqnet

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalempnes.o O = LPlanes K
dalempnes.y Y = P ˙ Q ˙ R
Assertion dalemqnet φ Q T

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalempnes.o O = LPlanes K
6 dalempnes.y Y = P ˙ Q ˙ R
7 1 dalemkelat φ K Lat
8 1 4 dalemceb φ C Base K
9 1 4 dalemteb φ T Base K
10 1 4 dalemueb φ U Base K
11 simp322 K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U ¬ C ˙ T ˙ U
12 1 11 sylbi φ ¬ C ˙ T ˙ U
13 eqid Base K = Base K
14 13 2 3 latnlej2l K Lat C Base K T Base K U Base K ¬ C ˙ T ˙ U ¬ C ˙ T
15 7 8 9 10 12 14 syl131anc φ ¬ C ˙ T
16 1 dalemclqjt φ C ˙ Q ˙ T
17 oveq1 Q = T Q ˙ T = T ˙ T
18 17 breq2d Q = T C ˙ Q ˙ T C ˙ T ˙ T
19 16 18 syl5ibcom φ Q = T C ˙ T ˙ T
20 1 dalemkehl φ K HL
21 1 dalemtea φ T A
22 3 4 hlatjidm K HL T A T ˙ T = T
23 20 21 22 syl2anc φ T ˙ T = T
24 23 breq2d φ C ˙ T ˙ T C ˙ T
25 19 24 sylibd φ Q = T C ˙ T
26 25 necon3bd φ ¬ C ˙ T Q T
27 15 26 mpd φ Q T