Metamath Proof Explorer


Theorem dalemsly

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
dalemc.l ˙ = K
dalemc.j ˙ = join K
dalemc.a A = Atoms K
dalemsly.z Z = S ˙ T ˙ U
Assertion dalemsly φ Y = Z S ˙ Y

Proof

Step Hyp Ref Expression
1 dalema.ph φ K HL C Base K P A Q A R A S A T A U A Y O Z O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
2 dalemc.l ˙ = K
3 dalemc.j ˙ = join K
4 dalemc.a A = Atoms K
5 dalemsly.z Z = S ˙ T ˙ U
6 1 dalemkelat φ K Lat
7 1 4 dalemseb φ S Base K
8 1 3 4 dalemtjueb φ T ˙ U Base K
9 eqid Base K = Base K
10 9 2 3 latlej1 K Lat S Base K T ˙ U Base K S ˙ S ˙ T ˙ U
11 6 7 8 10 syl3anc φ S ˙ S ˙ T ˙ U
12 1 dalemkehl φ K HL
13 1 dalemsea φ S A
14 1 dalemtea φ T A
15 1 dalemuea φ U A
16 3 4 hlatjass K HL S A T A U A S ˙ T ˙ U = S ˙ T ˙ U
17 12 13 14 15 16 syl13anc φ S ˙ T ˙ U = S ˙ T ˙ U
18 11 17 breqtrrd φ S ˙ S ˙ T ˙ U
19 18 5 breqtrrdi φ S ˙ Z
20 19 adantr φ Y = Z S ˙ Z
21 simpr φ Y = Z Y = Z
22 20 21 breqtrrd φ Y = Z S ˙ Y