Description: CONTRADICTION PROVED AT 1 + 1 = 2 .
Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses.
Note: Values that when added would exceed a 4bit value are not supported.
Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2', 0010 would be '4'.
How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit.
( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dandysum2p2e4.a | ||
| dandysum2p2e4.b | |||
| dandysum2p2e4.c | |||
| dandysum2p2e4.d | |||
| dandysum2p2e4.e | |||
| dandysum2p2e4.f | |||
| dandysum2p2e4.g | |||
| dandysum2p2e4.h | |||
| dandysum2p2e4.i | |||
| dandysum2p2e4.j | |||
| dandysum2p2e4.k | |||
| dandysum2p2e4.l | |||
| dandysum2p2e4.m | No typesetting found for |- ( jph <-> ( ( et \/_ ze ) \/ ph ) ) with typecode |- | ||
| dandysum2p2e4.n | No typesetting found for |- ( jps <-> ( ( si \/_ rh ) \/ ps ) ) with typecode |- | ||
| dandysum2p2e4.o | No typesetting found for |- ( jch <-> ( ( mu \/_ la ) \/ ch ) ) with typecode |- | ||
| Assertion | dandysum2p2e4 | Could not format assertion : No typesetting found for |- ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dandysum2p2e4.a | ||
| 2 | dandysum2p2e4.b | ||
| 3 | dandysum2p2e4.c | ||
| 4 | dandysum2p2e4.d | ||
| 5 | dandysum2p2e4.e | ||
| 6 | dandysum2p2e4.f | ||
| 7 | dandysum2p2e4.g | ||
| 8 | dandysum2p2e4.h | ||
| 9 | dandysum2p2e4.i | ||
| 10 | dandysum2p2e4.j | ||
| 11 | dandysum2p2e4.k | ||
| 12 | dandysum2p2e4.l | ||
| 13 | dandysum2p2e4.m | Could not format ( jph <-> ( ( et \/_ ze ) \/ ph ) ) : No typesetting found for |- ( jph <-> ( ( et \/_ ze ) \/ ph ) ) with typecode |- | |
| 14 | dandysum2p2e4.n | Could not format ( jps <-> ( ( si \/_ rh ) \/ ps ) ) : No typesetting found for |- ( jps <-> ( ( si \/_ rh ) \/ ps ) ) with typecode |- | |
| 15 | dandysum2p2e4.o | Could not format ( jch <-> ( ( mu \/_ la ) \/ ch ) ) : No typesetting found for |- ( jch <-> ( ( mu \/_ la ) \/ ch ) ) with typecode |- | |
| 16 | 12 | biimpi | |
| 17 | 4 5 | bothfbothsame | |
| 18 | 17 | aisbnaxb | |
| 19 | 4 | aisfina | |
| 20 | 19 | notatnand | |
| 21 | 18 20 | 2false | |
| 22 | 21 | aisbnaxb | |
| 23 | 16 22 | aibnbaif | |
| 24 | 13 | biimpi | Could not format ( jph -> ( ( et \/_ ze ) \/ ph ) ) : No typesetting found for |- ( jph -> ( ( et \/_ ze ) \/ ph ) ) with typecode |- |
| 25 | 6 7 | bothtbothsame | |
| 26 | 25 | aisbnaxb | |
| 27 | 20 1 | mtbir | |
| 28 | 26 27 | pm3.2ni | |
| 29 | 24 28 | aibnbaif | Could not format ( jph <-> F. ) : No typesetting found for |- ( jph <-> F. ) with typecode |- |
| 30 | 23 29 | pm3.2i | Could not format ( ( ka <-> F. ) /\ ( jph <-> F. ) ) : No typesetting found for |- ( ( ka <-> F. ) /\ ( jph <-> F. ) ) with typecode |- |
| 31 | 6 7 | astbstanbst | |
| 32 | 2 31 | aiffbbtat | |
| 33 | 32 | aistia | |
| 34 | 33 | olci | |
| 35 | 34 | bitru | |
| 36 | 14 35 | aiffbbtat | Could not format ( jps <-> T. ) : No typesetting found for |- ( jps <-> T. ) with typecode |- |
| 37 | 30 36 | pm3.2i | Could not format ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) : No typesetting found for |- ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) with typecode |- |
| 38 | 15 | biimpi | Could not format ( jch -> ( ( mu \/_ la ) \/ ch ) ) : No typesetting found for |- ( jch -> ( ( mu \/_ la ) \/ ch ) ) with typecode |- |
| 39 | 10 11 | bothfbothsame | |
| 40 | 39 | aisbnaxb | |
| 41 | 8 | aisfina | |
| 42 | 41 | notatnand | |
| 43 | 42 3 | mtbir | |
| 44 | 40 43 | pm3.2ni | |
| 45 | 38 44 | aibnbaif | Could not format ( jch <-> F. ) : No typesetting found for |- ( jch <-> F. ) with typecode |- |
| 46 | 37 45 | pm3.2i | Could not format ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) : No typesetting found for |- ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) with typecode |- |
| 47 | 46 | a1i | Could not format ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) ) with typecode |- |