Metamath Proof Explorer


Theorem darapti

Description: "Darapti", one of the syllogisms of Aristotelian logic. All ph is ps , all ph is ch , and some ph exist, therefore some ch is ps . In Aristotelian notation, AAI-3: MaP and MaS therefore SiP. For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses darapti.maj xφψ
darapti.min xφχ
darapti.e xφ
Assertion darapti xχψ

Proof

Step Hyp Ref Expression
1 darapti.maj xφψ
2 darapti.min xφχ
3 darapti.e xφ
4 id φχφψφχφψ
5 4 alanimi xφχxφψxφχφψ
6 2 1 5 mp2an xφχφψ
7 pm3.43 φχφψφχψ
8 7 alimi xφχφψxφχψ
9 6 8 ax-mp xφχψ
10 exim xφχψxφxχψ
11 9 3 10 mp2 xχψ