Metamath Proof Explorer


Theorem darapti

Description: "Darapti", one of the syllogisms of Aristotelian logic. All ph is ps , all ph is ch , and some ph exist, therefore some ch is ps . In Aristotelian notation, AAI-3: MaP and MaS therefore SiP. For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses darapti.maj x φ ψ
darapti.min x φ χ
darapti.e x φ
Assertion darapti x χ ψ

Proof

Step Hyp Ref Expression
1 darapti.maj x φ ψ
2 darapti.min x φ χ
3 darapti.e x φ
4 id φ χ φ ψ φ χ φ ψ
5 4 alanimi x φ χ x φ ψ x φ χ φ ψ
6 2 1 5 mp2an x φ χ φ ψ
7 pm3.43 φ χ φ ψ φ χ ψ
8 7 alimi x φ χ φ ψ x φ χ ψ
9 6 8 ax-mp x φ χ ψ
10 exim x φ χ ψ x φ x χ ψ
11 9 3 10 mp2 x χ ψ