Metamath Proof Explorer


Theorem daraptiALT

Description: Alternate proof of darapti , shorter but using more axioms. See comment of dariiALT . (Contributed by David A. Wheeler, 27-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses darapti.maj x φ ψ
darapti.min x φ χ
darapti.e x φ
Assertion daraptiALT x χ ψ

Proof

Step Hyp Ref Expression
1 darapti.maj x φ ψ
2 darapti.min x φ χ
3 darapti.e x φ
4 2 spi φ χ
5 1 spi φ ψ
6 4 5 jca φ χ ψ
7 3 6 eximii x χ ψ