Metamath Proof Explorer


Theorem dath

Description: Desargues's theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points) P Q R and S T U forms a triangle (i.e. determines a plane). Assume that lines P S , Q T , and R U meet at a "center of perspectivity" C . (We also assume that C is not on any of the 6 lines forming the two triangles.) Then the atoms D = ( P .\/ Q ) ./\ ( S .\/ T ) , E = ( Q .\/ R ) ./\ ( T .\/ U ) , F = ( R .\/ P ) ./\ ( U .\/ S ) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum,Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that C is an atom to make this theorem slightly more general for easier future use. However, we prove that C must be an atom in dalemcea .

For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html . The points I, J, and K there define the axis of perspectivity.

See Theorems dalaw for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012)

Ref Expression
Hypotheses dath.b B = Base K
dath.l ˙ = K
dath.j ˙ = join K
dath.a A = Atoms K
dath.m ˙ = meet K
dath.o O = LPlanes K
dath.d D = P ˙ Q ˙ S ˙ T
dath.e E = Q ˙ R ˙ T ˙ U
dath.f F = R ˙ P ˙ U ˙ S
Assertion dath K HL C B P A Q A R A S A T A U A P ˙ Q ˙ R O S ˙ T ˙ U O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U F ˙ D ˙ E

Proof

Step Hyp Ref Expression
1 dath.b B = Base K
2 dath.l ˙ = K
3 dath.j ˙ = join K
4 dath.a A = Atoms K
5 dath.m ˙ = meet K
6 dath.o O = LPlanes K
7 dath.d D = P ˙ Q ˙ S ˙ T
8 dath.e E = Q ˙ R ˙ T ˙ U
9 dath.f F = R ˙ P ˙ U ˙ S
10 1 eleq2i C B C Base K
11 10 anbi2i K HL C B K HL C Base K
12 11 3anbi1i K HL C B P A Q A R A S A T A U A K HL C Base K P A Q A R A S A T A U A
13 12 3anbi1i K HL C B P A Q A R A S A T A U A P ˙ Q ˙ R O S ˙ T ˙ U O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U K HL C Base K P A Q A R A S A T A U A P ˙ Q ˙ R O S ˙ T ˙ U O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U
14 eqid P ˙ Q ˙ R = P ˙ Q ˙ R
15 eqid S ˙ T ˙ U = S ˙ T ˙ U
16 13 2 3 4 5 6 14 15 7 8 9 dalem63 K HL C B P A Q A R A S A T A U A P ˙ Q ˙ R O S ˙ T ˙ U O ¬ C ˙ P ˙ Q ¬ C ˙ Q ˙ R ¬ C ˙ R ˙ P ¬ C ˙ S ˙ T ¬ C ˙ T ˙ U ¬ C ˙ U ˙ S C ˙ P ˙ S C ˙ Q ˙ T C ˙ R ˙ U F ˙ D ˙ E