Metamath Proof Explorer


Theorem dchr1

Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchr1.g G = DChr N
dchr1.z Z = /N
dchr1.o 1 ˙ = 0 G
dchr1.u U = Unit Z
dchr1.n φ N
dchr1.a φ A U
Assertion dchr1 φ 1 ˙ A = 1

Proof

Step Hyp Ref Expression
1 dchr1.g G = DChr N
2 dchr1.z Z = /N
3 dchr1.o 1 ˙ = 0 G
4 dchr1.u U = Unit Z
5 dchr1.n φ N
6 dchr1.a φ A U
7 eqid Base G = Base G
8 eqid Base Z = Base Z
9 eqid k Base Z if k U 1 0 = k Base Z if k U 1 0
10 1 2 7 8 4 9 5 dchr1cl φ k Base Z if k U 1 0 Base G
11 eleq1w k = x k U x U
12 11 ifbid k = x if k U 1 0 = if x U 1 0
13 12 cbvmptv k Base Z if k U 1 0 = x Base Z if x U 1 0
14 eqid + G = + G
15 1 2 7 8 4 13 14 10 dchrmulid2 φ k Base Z if k U 1 0 + G k Base Z if k U 1 0 = k Base Z if k U 1 0
16 1 dchrabl N G Abel
17 ablgrp G Abel G Grp
18 7 14 3 isgrpid2 G Grp k Base Z if k U 1 0 Base G k Base Z if k U 1 0 + G k Base Z if k U 1 0 = k Base Z if k U 1 0 1 ˙ = k Base Z if k U 1 0
19 5 16 17 18 4syl φ k Base Z if k U 1 0 Base G k Base Z if k U 1 0 + G k Base Z if k U 1 0 = k Base Z if k U 1 0 1 ˙ = k Base Z if k U 1 0
20 10 15 19 mpbi2and φ 1 ˙ = k Base Z if k U 1 0
21 simpr φ k = A k = A
22 6 adantr φ k = A A U
23 21 22 eqeltrd φ k = A k U
24 23 iftrued φ k = A if k U 1 0 = 1
25 8 4 unitss U Base Z
26 25 6 sselid φ A Base Z
27 1cnd φ 1
28 20 24 26 27 fvmptd φ 1 ˙ A = 1