Metamath Proof Explorer


Theorem dchr1cl

Description: Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrn0.b B = Base Z
dchrn0.u U = Unit Z
dchr1cl.o 1 ˙ = k B if k U 1 0
dchr1cl.n φ N
Assertion dchr1cl φ 1 ˙ D

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrn0.b B = Base Z
5 dchrn0.u U = Unit Z
6 dchr1cl.o 1 ˙ = k B if k U 1 0
7 dchr1cl.n φ N
8 eqidd k = x 1 = 1
9 eqidd k = y 1 = 1
10 eqidd k = x Z y 1 = 1
11 eqidd k = 1 Z 1 = 1
12 1cnd φ k U 1
13 1t1e1 1 1 = 1
14 13 eqcomi 1 = 1 1
15 14 a1i φ x U y U 1 = 1 1
16 eqidd φ 1 = 1
17 1 2 4 5 7 3 8 9 10 11 12 15 16 dchrelbasd φ k B if k U 1 0 D
18 6 17 eqeltrid φ 1 ˙ D