Metamath Proof Explorer


Theorem dchr1re

Description: The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses dchr1re.g G = DChr N
dchr1re.z Z = /N
dchr1re.o 1 ˙ = 0 G
dchr1re.b B = Base Z
dchr1re.n φ N
Assertion dchr1re φ 1 ˙ : B

Proof

Step Hyp Ref Expression
1 dchr1re.g G = DChr N
2 dchr1re.z Z = /N
3 dchr1re.o 1 ˙ = 0 G
4 dchr1re.b B = Base Z
5 dchr1re.n φ N
6 eqid Base G = Base G
7 1 dchrabl N G Abel
8 ablgrp G Abel G Grp
9 6 3 grpidcl G Grp 1 ˙ Base G
10 5 7 8 9 4syl φ 1 ˙ Base G
11 1 2 6 4 10 dchrf φ 1 ˙ : B
12 11 ffnd φ 1 ˙ Fn B
13 simpr φ x B 1 ˙ x = 0 1 ˙ x = 0
14 0re 0
15 13 14 eqeltrdi φ x B 1 ˙ x = 0 1 ˙ x
16 eqid Unit Z = Unit Z
17 5 ad2antrr φ x B 1 ˙ x 0 N
18 10 adantr φ x B 1 ˙ Base G
19 simpr φ x B x B
20 1 2 6 4 16 18 19 dchrn0 φ x B 1 ˙ x 0 x Unit Z
21 20 biimpa φ x B 1 ˙ x 0 x Unit Z
22 1 2 3 16 17 21 dchr1 φ x B 1 ˙ x 0 1 ˙ x = 1
23 1re 1
24 22 23 eqeltrdi φ x B 1 ˙ x 0 1 ˙ x
25 15 24 pm2.61dane φ x B 1 ˙ x
26 25 ralrimiva φ x B 1 ˙ x
27 ffnfv 1 ˙ : B 1 ˙ Fn B x B 1 ˙ x
28 12 26 27 sylanbrc φ 1 ˙ : B