Step |
Hyp |
Ref |
Expression |
1 |
|
dchr2sum.g |
|
2 |
|
dchr2sum.z |
|
3 |
|
dchr2sum.d |
|
4 |
|
dchr2sum.b |
|
5 |
|
dchr2sum.x |
|
6 |
|
dchr2sum.y |
|
7 |
|
eqid |
|
8 |
1 3
|
dchrrcl |
|
9 |
5 8
|
syl |
|
10 |
1
|
dchrabl |
|
11 |
|
ablgrp |
|
12 |
9 10 11
|
3syl |
|
13 |
|
eqid |
|
14 |
3 13
|
grpsubcl |
|
15 |
12 5 6 14
|
syl3anc |
|
16 |
1 2 3 7 15 4
|
dchrsum |
|
17 |
5
|
adantr |
|
18 |
6
|
adantr |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
3 19 20 13
|
grpsubval |
|
22 |
17 18 21
|
syl2anc |
|
23 |
9
|
adantr |
|
24 |
23 10 11
|
3syl |
|
25 |
3 20
|
grpinvcl |
|
26 |
24 18 25
|
syl2anc |
|
27 |
1 2 3 19 17 26
|
dchrmul |
|
28 |
22 27
|
eqtrd |
|
29 |
28
|
fveq1d |
|
30 |
1 2 3 4 17
|
dchrf |
|
31 |
30
|
ffnd |
|
32 |
1 2 3 4 26
|
dchrf |
|
33 |
32
|
ffnd |
|
34 |
4
|
fvexi |
|
35 |
34
|
a1i |
|
36 |
|
simpr |
|
37 |
|
fnfvof |
|
38 |
31 33 35 36 37
|
syl22anc |
|
39 |
1 3 18 20
|
dchrinv |
|
40 |
39
|
fveq1d |
|
41 |
1 2 3 4 18
|
dchrf |
|
42 |
|
fvco3 |
|
43 |
41 36 42
|
syl2anc |
|
44 |
40 43
|
eqtrd |
|
45 |
44
|
oveq2d |
|
46 |
29 38 45
|
3eqtrd |
|
47 |
46
|
sumeq2dv |
|
48 |
3 7 13
|
grpsubeq0 |
|
49 |
12 5 6 48
|
syl3anc |
|
50 |
49
|
ifbid |
|
51 |
16 47 50
|
3eqtr3d |
|