Step |
Hyp |
Ref |
Expression |
1 |
|
dchrabl.g |
|
2 |
|
eqidd |
|
3 |
|
eqidd |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
simp2 |
|
8 |
|
simp3 |
|
9 |
1 4 5 6 7 8
|
dchrmulcl |
|
10 |
|
fvexd |
|
11 |
|
eqid |
|
12 |
1 4 5 11 7
|
dchrf |
|
13 |
12
|
3adant3r3 |
|
14 |
1 4 5 11 8
|
dchrf |
|
15 |
14
|
3adant3r3 |
|
16 |
|
simpr3 |
|
17 |
1 4 5 11 16
|
dchrf |
|
18 |
|
mulass |
|
19 |
18
|
adantl |
|
20 |
10 13 15 17 19
|
caofass |
|
21 |
|
simpr1 |
|
22 |
|
simpr2 |
|
23 |
1 4 5 6 21 22
|
dchrmul |
|
24 |
23
|
oveq1d |
|
25 |
1 4 5 6 22 16
|
dchrmul |
|
26 |
25
|
oveq2d |
|
27 |
20 24 26
|
3eqtr4d |
|
28 |
9
|
3adant3r3 |
|
29 |
1 4 5 6 28 16
|
dchrmul |
|
30 |
1 4 5 6 22 16
|
dchrmulcl |
|
31 |
1 4 5 6 21 30
|
dchrmul |
|
32 |
27 29 31
|
3eqtr4d |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
|
id |
|
36 |
1 4 5 11 33 34 35
|
dchr1cl |
|
37 |
|
simpr |
|
38 |
1 4 5 11 33 34 6 37
|
dchrmulid2 |
|
39 |
|
eqid |
|
40 |
1 4 5 11 33 34 6 37 39
|
dchrinvcl |
|
41 |
40
|
simpld |
|
42 |
40
|
simprd |
|
43 |
2 3 9 32 36 38 41 42
|
isgrpd |
|
44 |
|
fvexd |
|
45 |
|
mulcom |
|
46 |
45
|
adantl |
|
47 |
44 12 14 46
|
caofcom |
|
48 |
1 4 5 6 7 8
|
dchrmul |
|
49 |
1 4 5 6 8 7
|
dchrmul |
|
50 |
47 48 49
|
3eqtr4d |
|
51 |
2 3 43 50
|
isabld |
|