Metamath Proof Explorer


Theorem dchrabl

Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis dchrabl.g G = DChr N
Assertion dchrabl N G Abel

Proof

Step Hyp Ref Expression
1 dchrabl.g G = DChr N
2 eqidd N Base G = Base G
3 eqidd N + G = + G
4 eqid /N = /N
5 eqid Base G = Base G
6 eqid + G = + G
7 simp2 N x Base G y Base G x Base G
8 simp3 N x Base G y Base G y Base G
9 1 4 5 6 7 8 dchrmulcl N x Base G y Base G x + G y Base G
10 fvexd N x Base G y Base G z Base G Base /N V
11 eqid Base /N = Base /N
12 1 4 5 11 7 dchrf N x Base G y Base G x : Base /N
13 12 3adant3r3 N x Base G y Base G z Base G x : Base /N
14 1 4 5 11 8 dchrf N x Base G y Base G y : Base /N
15 14 3adant3r3 N x Base G y Base G z Base G y : Base /N
16 simpr3 N x Base G y Base G z Base G z Base G
17 1 4 5 11 16 dchrf N x Base G y Base G z Base G z : Base /N
18 mulass a b c a b c = a b c
19 18 adantl N x Base G y Base G z Base G a b c a b c = a b c
20 10 13 15 17 19 caofass N x Base G y Base G z Base G x × f y × f z = x × f y × f z
21 simpr1 N x Base G y Base G z Base G x Base G
22 simpr2 N x Base G y Base G z Base G y Base G
23 1 4 5 6 21 22 dchrmul N x Base G y Base G z Base G x + G y = x × f y
24 23 oveq1d N x Base G y Base G z Base G x + G y × f z = x × f y × f z
25 1 4 5 6 22 16 dchrmul N x Base G y Base G z Base G y + G z = y × f z
26 25 oveq2d N x Base G y Base G z Base G x × f y + G z = x × f y × f z
27 20 24 26 3eqtr4d N x Base G y Base G z Base G x + G y × f z = x × f y + G z
28 9 3adant3r3 N x Base G y Base G z Base G x + G y Base G
29 1 4 5 6 28 16 dchrmul N x Base G y Base G z Base G x + G y + G z = x + G y × f z
30 1 4 5 6 22 16 dchrmulcl N x Base G y Base G z Base G y + G z Base G
31 1 4 5 6 21 30 dchrmul N x Base G y Base G z Base G x + G y + G z = x × f y + G z
32 27 29 31 3eqtr4d N x Base G y Base G z Base G x + G y + G z = x + G y + G z
33 eqid Unit /N = Unit /N
34 eqid k Base /N if k Unit /N 1 0 = k Base /N if k Unit /N 1 0
35 id N N
36 1 4 5 11 33 34 35 dchr1cl N k Base /N if k Unit /N 1 0 Base G
37 simpr N x Base G x Base G
38 1 4 5 11 33 34 6 37 dchrmulid2 N x Base G k Base /N if k Unit /N 1 0 + G x = x
39 eqid k Base /N if k Unit /N 1 x k 0 = k Base /N if k Unit /N 1 x k 0
40 1 4 5 11 33 34 6 37 39 dchrinvcl N x Base G k Base /N if k Unit /N 1 x k 0 Base G k Base /N if k Unit /N 1 x k 0 + G x = k Base /N if k Unit /N 1 0
41 40 simpld N x Base G k Base /N if k Unit /N 1 x k 0 Base G
42 40 simprd N x Base G k Base /N if k Unit /N 1 x k 0 + G x = k Base /N if k Unit /N 1 0
43 2 3 9 32 36 38 41 42 isgrpd N G Grp
44 fvexd N x Base G y Base G Base /N V
45 mulcom a b a b = b a
46 45 adantl N x Base G y Base G a b a b = b a
47 44 12 14 46 caofcom N x Base G y Base G x × f y = y × f x
48 1 4 5 6 7 8 dchrmul N x Base G y Base G x + G y = x × f y
49 1 4 5 6 8 7 dchrmul N x Base G y Base G y + G x = y × f x
50 47 48 49 3eqtr4d N x Base G y Base G x + G y = y + G x
51 2 3 43 50 isabld N G Abel