Metamath Proof Explorer


Theorem dchrabs2

Description: A Dirichlet character takes values inside the unit circle. (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses dchrabs2.g G = DChr N
dchrabs2.d D = Base G
dchrabs2.z Z = /N
dchrabs2.b B = Base Z
dchrabs2.x φ X D
dchrabs2.a φ A B
Assertion dchrabs2 φ X A 1

Proof

Step Hyp Ref Expression
1 dchrabs2.g G = DChr N
2 dchrabs2.d D = Base G
3 dchrabs2.z Z = /N
4 dchrabs2.b B = Base Z
5 dchrabs2.x φ X D
6 dchrabs2.a φ A B
7 simpr φ X A = 0 X A = 0
8 7 abs00bd φ X A = 0 X A = 0
9 0le1 0 1
10 8 9 eqbrtrdi φ X A = 0 X A 1
11 5 adantr φ X A 0 X D
12 eqid Unit Z = Unit Z
13 1 3 2 4 12 5 6 dchrn0 φ X A 0 A Unit Z
14 13 biimpa φ X A 0 A Unit Z
15 1 2 11 3 12 14 dchrabs φ X A 0 X A = 1
16 1le1 1 1
17 15 16 eqbrtrdi φ X A 0 X A 1
18 10 17 pm2.61dane φ X A 1