Metamath Proof Explorer


Theorem dchrelbas

Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrval.g G = DChr N
dchrval.z Z = /N
dchrval.b B = Base Z
dchrval.u U = Unit Z
dchrval.n φ N
dchrbas.b D = Base G
Assertion dchrelbas φ X D X mulGrp Z MndHom mulGrp fld B U × 0 X

Proof

Step Hyp Ref Expression
1 dchrval.g G = DChr N
2 dchrval.z Z = /N
3 dchrval.b B = Base Z
4 dchrval.u U = Unit Z
5 dchrval.n φ N
6 dchrbas.b D = Base G
7 1 2 3 4 5 6 dchrbas φ D = x mulGrp Z MndHom mulGrp fld | B U × 0 x
8 7 eleq2d φ X D X x mulGrp Z MndHom mulGrp fld | B U × 0 x
9 sseq2 x = X B U × 0 x B U × 0 X
10 9 elrab X x mulGrp Z MndHom mulGrp fld | B U × 0 x X mulGrp Z MndHom mulGrp fld B U × 0 X
11 8 10 bitrdi φ X D X mulGrp Z MndHom mulGrp fld B U × 0 X