Metamath Proof Explorer


Theorem dchrelbasd

Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrval.g G = DChr N
dchrval.z Z = /N
dchrval.b B = Base Z
dchrval.u U = Unit Z
dchrval.n φ N
dchrbas.b D = Base G
dchrelbasd.1 k = x X = A
dchrelbasd.2 k = y X = C
dchrelbasd.3 k = x Z y X = E
dchrelbasd.4 k = 1 Z X = Y
dchrelbasd.5 φ k U X
dchrelbasd.6 φ x U y U E = A C
dchrelbasd.7 φ Y = 1
Assertion dchrelbasd φ k B if k U X 0 D

Proof

Step Hyp Ref Expression
1 dchrval.g G = DChr N
2 dchrval.z Z = /N
3 dchrval.b B = Base Z
4 dchrval.u U = Unit Z
5 dchrval.n φ N
6 dchrbas.b D = Base G
7 dchrelbasd.1 k = x X = A
8 dchrelbasd.2 k = y X = C
9 dchrelbasd.3 k = x Z y X = E
10 dchrelbasd.4 k = 1 Z X = Y
11 dchrelbasd.5 φ k U X
12 dchrelbasd.6 φ x U y U E = A C
13 dchrelbasd.7 φ Y = 1
14 11 adantlr φ k B k U X
15 0cnd φ k B ¬ k U 0
16 14 15 ifclda φ k B if k U X 0
17 16 fmpttd φ k B if k U X 0 : B
18 5 nnnn0d φ N 0
19 2 zncrng N 0 Z CRing
20 crngring Z CRing Z Ring
21 18 19 20 3syl φ Z Ring
22 eqid Z = Z
23 4 22 unitmulcl Z Ring x U y U x Z y U
24 23 3expb Z Ring x U y U x Z y U
25 21 24 sylan φ x U y U x Z y U
26 25 iftrued φ x U y U if x Z y U E 0 = E
27 26 12 eqtrd φ x U y U if x Z y U E 0 = A C
28 eqid k B if k U X 0 = k B if k U X 0
29 eleq1 k = x Z y k U x Z y U
30 29 9 ifbieq1d k = x Z y if k U X 0 = if x Z y U E 0
31 3 4 unitss U B
32 31 25 sseldi φ x U y U x Z y B
33 9 eleq1d k = x Z y X E
34 11 ralrimiva φ k U X
35 34 adantr φ x U y U k U X
36 33 35 25 rspcdva φ x U y U E
37 26 36 eqeltrd φ x U y U if x Z y U E 0
38 28 30 32 37 fvmptd3 φ x U y U k B if k U X 0 x Z y = if x Z y U E 0
39 eleq1 k = x k U x U
40 39 7 ifbieq1d k = x if k U X 0 = if x U A 0
41 simprl φ x U y U x U
42 31 41 sseldi φ x U y U x B
43 iftrue x U if x U A 0 = A
44 43 ad2antrl φ x U y U if x U A 0 = A
45 7 eleq1d k = x X A
46 45 35 41 rspcdva φ x U y U A
47 44 46 eqeltrd φ x U y U if x U A 0
48 28 40 42 47 fvmptd3 φ x U y U k B if k U X 0 x = if x U A 0
49 48 44 eqtrd φ x U y U k B if k U X 0 x = A
50 eleq1 k = y k U y U
51 50 8 ifbieq1d k = y if k U X 0 = if y U C 0
52 simprr φ x U y U y U
53 31 52 sseldi φ x U y U y B
54 iftrue y U if y U C 0 = C
55 54 ad2antll φ x U y U if y U C 0 = C
56 8 eleq1d k = y X C
57 56 35 52 rspcdva φ x U y U C
58 55 57 eqeltrd φ x U y U if y U C 0
59 28 51 53 58 fvmptd3 φ x U y U k B if k U X 0 y = if y U C 0
60 59 55 eqtrd φ x U y U k B if k U X 0 y = C
61 49 60 oveq12d φ x U y U k B if k U X 0 x k B if k U X 0 y = A C
62 27 38 61 3eqtr4d φ x U y U k B if k U X 0 x Z y = k B if k U X 0 x k B if k U X 0 y
63 62 ralrimivva φ x U y U k B if k U X 0 x Z y = k B if k U X 0 x k B if k U X 0 y
64 eleq1 k = 1 Z k U 1 Z U
65 64 10 ifbieq1d k = 1 Z if k U X 0 = if 1 Z U Y 0
66 eqid 1 Z = 1 Z
67 4 66 1unit Z Ring 1 Z U
68 21 67 syl φ 1 Z U
69 31 68 sseldi φ 1 Z B
70 68 iftrued φ if 1 Z U Y 0 = Y
71 70 13 eqtrd φ if 1 Z U Y 0 = 1
72 ax-1cn 1
73 71 72 eqeltrdi φ if 1 Z U Y 0
74 28 65 69 73 fvmptd3 φ k B if k U X 0 1 Z = if 1 Z U Y 0
75 74 71 eqtrd φ k B if k U X 0 1 Z = 1
76 simpr φ x B x B
77 45 rspcv x U k U X A
78 34 77 mpan9 φ x U A
79 78 adantlr φ x B x U A
80 0cnd φ x B ¬ x U 0
81 79 80 ifclda φ x B if x U A 0
82 28 40 76 81 fvmptd3 φ x B k B if k U X 0 x = if x U A 0
83 82 neeq1d φ x B k B if k U X 0 x 0 if x U A 0 0
84 iffalse ¬ x U if x U A 0 = 0
85 84 necon1ai if x U A 0 0 x U
86 83 85 syl6bi φ x B k B if k U X 0 x 0 x U
87 86 ralrimiva φ x B k B if k U X 0 x 0 x U
88 63 75 87 3jca φ x U y U k B if k U X 0 x Z y = k B if k U X 0 x k B if k U X 0 y k B if k U X 0 1 Z = 1 x B k B if k U X 0 x 0 x U
89 1 2 3 4 5 6 dchrelbas3 φ k B if k U X 0 D k B if k U X 0 : B x U y U k B if k U X 0 x Z y = k B if k U X 0 x k B if k U X 0 y k B if k U X 0 1 Z = 1 x B k B if k U X 0 x 0 x U
90 17 88 89 mpbir2and φ k B if k U X 0 D