Step |
Hyp |
Ref |
Expression |
1 |
|
dchrresb.g |
|
2 |
|
dchrresb.z |
|
3 |
|
dchrresb.b |
|
4 |
|
dchrresb.u |
|
5 |
|
dchrresb.x |
|
6 |
|
dchrresb.Y |
|
7 |
|
eldif |
|
8 |
|
eqid |
|
9 |
5
|
adantr |
|
10 |
|
simpr |
|
11 |
1 2 3 8 4 9 10
|
dchrn0 |
|
12 |
11
|
biimpd |
|
13 |
12
|
necon1bd |
|
14 |
13
|
impr |
|
15 |
7 14
|
sylan2b |
|
16 |
6
|
adantr |
|
17 |
1 2 3 8 4 16 10
|
dchrn0 |
|
18 |
17
|
biimpd |
|
19 |
18
|
necon1bd |
|
20 |
19
|
impr |
|
21 |
7 20
|
sylan2b |
|
22 |
15 21
|
eqtr4d |
|
23 |
22
|
ralrimiva |
|
24 |
1 2 3 8 5
|
dchrf |
|
25 |
24
|
ffnd |
|
26 |
1 2 3 8 6
|
dchrf |
|
27 |
26
|
ffnd |
|
28 |
|
eqfnfv |
|
29 |
25 27 28
|
syl2anc |
|
30 |
8 4
|
unitss |
|
31 |
|
undif |
|
32 |
30 31
|
mpbi |
|
33 |
32
|
raleqi |
|
34 |
|
ralunb |
|
35 |
33 34
|
bitr3i |
|
36 |
29 35
|
bitrdi |
|
37 |
23 36
|
mpbiran2d |
|