Metamath Proof Explorer


Theorem dchreq

Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrresb.g G = DChr N
dchrresb.z Z = /N
dchrresb.b D = Base G
dchrresb.u U = Unit Z
dchrresb.x φ X D
dchrresb.Y φ Y D
Assertion dchreq φ X = Y k U X k = Y k

Proof

Step Hyp Ref Expression
1 dchrresb.g G = DChr N
2 dchrresb.z Z = /N
3 dchrresb.b D = Base G
4 dchrresb.u U = Unit Z
5 dchrresb.x φ X D
6 dchrresb.Y φ Y D
7 eldif k Base Z U k Base Z ¬ k U
8 eqid Base Z = Base Z
9 5 adantr φ k Base Z X D
10 simpr φ k Base Z k Base Z
11 1 2 3 8 4 9 10 dchrn0 φ k Base Z X k 0 k U
12 11 biimpd φ k Base Z X k 0 k U
13 12 necon1bd φ k Base Z ¬ k U X k = 0
14 13 impr φ k Base Z ¬ k U X k = 0
15 7 14 sylan2b φ k Base Z U X k = 0
16 6 adantr φ k Base Z Y D
17 1 2 3 8 4 16 10 dchrn0 φ k Base Z Y k 0 k U
18 17 biimpd φ k Base Z Y k 0 k U
19 18 necon1bd φ k Base Z ¬ k U Y k = 0
20 19 impr φ k Base Z ¬ k U Y k = 0
21 7 20 sylan2b φ k Base Z U Y k = 0
22 15 21 eqtr4d φ k Base Z U X k = Y k
23 22 ralrimiva φ k Base Z U X k = Y k
24 1 2 3 8 5 dchrf φ X : Base Z
25 24 ffnd φ X Fn Base Z
26 1 2 3 8 6 dchrf φ Y : Base Z
27 26 ffnd φ Y Fn Base Z
28 eqfnfv X Fn Base Z Y Fn Base Z X = Y k Base Z X k = Y k
29 25 27 28 syl2anc φ X = Y k Base Z X k = Y k
30 8 4 unitss U Base Z
31 undif U Base Z U Base Z U = Base Z
32 30 31 mpbi U Base Z U = Base Z
33 32 raleqi k U Base Z U X k = Y k k Base Z X k = Y k
34 ralunb k U Base Z U X k = Y k k U X k = Y k k Base Z U X k = Y k
35 33 34 bitr3i k Base Z X k = Y k k U X k = Y k k Base Z U X k = Y k
36 29 35 bitrdi φ X = Y k U X k = Y k k Base Z U X k = Y k
37 23 36 mpbiran2d φ X = Y k U X k = Y k