Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Characters of Z/nZ
dchrf
Next ⟩
dchrelbas4
Metamath Proof Explorer
Ascii
Unicode
Theorem
dchrf
Description:
A Dirichlet character is a function.
(Contributed by
Mario Carneiro
, 18-Apr-2016)
Ref
Expression
Hypotheses
dchrmhm.g
⊢
G
=
DChr
⁡
N
dchrmhm.z
⊢
Z
=
ℤ
/
N
ℤ
dchrmhm.b
⊢
D
=
Base
G
dchrf.b
⊢
B
=
Base
Z
dchrf.x
⊢
φ
→
X
∈
D
Assertion
dchrf
⊢
φ
→
X
:
B
⟶
ℂ
Proof
Step
Hyp
Ref
Expression
1
dchrmhm.g
⊢
G
=
DChr
⁡
N
2
dchrmhm.z
⊢
Z
=
ℤ
/
N
ℤ
3
dchrmhm.b
⊢
D
=
Base
G
4
dchrf.b
⊢
B
=
Base
Z
5
dchrf.x
⊢
φ
→
X
∈
D
6
eqid
⊢
Unit
⁡
Z
=
Unit
⁡
Z
7
1
3
dchrrcl
⊢
X
∈
D
→
N
∈
ℕ
8
5
7
syl
⊢
φ
→
N
∈
ℕ
9
1
2
4
6
8
3
dchrelbas3
⊢
φ
→
X
∈
D
↔
X
:
B
⟶
ℂ
∧
∀
x
∈
Unit
⁡
Z
∀
y
∈
Unit
⁡
Z
X
⁡
x
⋅
Z
y
=
X
⁡
x
⁢
X
⁡
y
∧
X
⁡
1
Z
=
1
∧
∀
x
∈
B
X
⁡
x
≠
0
→
x
∈
Unit
⁡
Z
10
5
9
mpbid
⊢
φ
→
X
:
B
⟶
ℂ
∧
∀
x
∈
Unit
⁡
Z
∀
y
∈
Unit
⁡
Z
X
⁡
x
⋅
Z
y
=
X
⁡
x
⁢
X
⁡
y
∧
X
⁡
1
Z
=
1
∧
∀
x
∈
B
X
⁡
x
≠
0
→
x
∈
Unit
⁡
Z
11
10
simpld
⊢
φ
→
X
:
B
⟶
ℂ