Metamath Proof Explorer


Theorem dchrf

Description: A Dirichlet character is a function. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrf.b B = Base Z
dchrf.x φ X D
Assertion dchrf φ X : B

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrf.b B = Base Z
5 dchrf.x φ X D
6 eqid Unit Z = Unit Z
7 1 3 dchrrcl X D N
8 5 7 syl φ N
9 1 2 4 6 8 3 dchrelbas3 φ X D X : B x Unit Z y Unit Z X x Z y = X x X y X 1 Z = 1 x B X x 0 x Unit Z
10 5 9 mpbid φ X : B x Unit Z y Unit Z X x Z y = X x X y X 1 Z = 1 x B X x 0 x Unit Z
11 10 simpld φ X : B