Metamath Proof Explorer


Theorem dchrghm

Description: A Dirichlet character restricted to the unit group of Z/nZ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses dchrghm.g G = DChr N
dchrghm.z Z = /N
dchrghm.b D = Base G
dchrghm.u U = Unit Z
dchrghm.h H = mulGrp Z 𝑠 U
dchrghm.m M = mulGrp fld 𝑠 0
dchrghm.x φ X D
Assertion dchrghm φ X U H GrpHom M

Proof

Step Hyp Ref Expression
1 dchrghm.g G = DChr N
2 dchrghm.z Z = /N
3 dchrghm.b D = Base G
4 dchrghm.u U = Unit Z
5 dchrghm.h H = mulGrp Z 𝑠 U
6 dchrghm.m M = mulGrp fld 𝑠 0
7 dchrghm.x φ X D
8 1 2 3 dchrmhm D mulGrp Z MndHom mulGrp fld
9 8 7 sselid φ X mulGrp Z MndHom mulGrp fld
10 1 3 dchrrcl X D N
11 7 10 syl φ N
12 11 nnnn0d φ N 0
13 2 zncrng N 0 Z CRing
14 12 13 syl φ Z CRing
15 crngring Z CRing Z Ring
16 14 15 syl φ Z Ring
17 eqid mulGrp Z = mulGrp Z
18 4 17 unitsubm Z Ring U SubMnd mulGrp Z
19 16 18 syl φ U SubMnd mulGrp Z
20 5 resmhm X mulGrp Z MndHom mulGrp fld U SubMnd mulGrp Z X U H MndHom mulGrp fld
21 9 19 20 syl2anc φ X U H MndHom mulGrp fld
22 cnring fld Ring
23 cnfldbas = Base fld
24 cnfld0 0 = 0 fld
25 cndrng fld DivRing
26 23 24 25 drngui 0 = Unit fld
27 eqid mulGrp fld = mulGrp fld
28 26 27 unitsubm fld Ring 0 SubMnd mulGrp fld
29 22 28 ax-mp 0 SubMnd mulGrp fld
30 df-ima X U = ran X U
31 eqid Base Z = Base Z
32 1 2 3 31 7 dchrf φ X : Base Z
33 31 4 unitss U Base Z
34 33 sseli x U x Base Z
35 ffvelrn X : Base Z x Base Z X x
36 32 34 35 syl2an φ x U X x
37 simpr φ x U x U
38 7 adantr φ x U X D
39 34 adantl φ x U x Base Z
40 1 2 3 31 4 38 39 dchrn0 φ x U X x 0 x U
41 37 40 mpbird φ x U X x 0
42 eldifsn X x 0 X x X x 0
43 36 41 42 sylanbrc φ x U X x 0
44 43 ralrimiva φ x U X x 0
45 32 ffund φ Fun X
46 32 fdmd φ dom X = Base Z
47 33 46 sseqtrrid φ U dom X
48 funimass4 Fun X U dom X X U 0 x U X x 0
49 45 47 48 syl2anc φ X U 0 x U X x 0
50 44 49 mpbird φ X U 0
51 30 50 eqsstrrid φ ran X U 0
52 6 resmhm2b 0 SubMnd mulGrp fld ran X U 0 X U H MndHom mulGrp fld X U H MndHom M
53 29 51 52 sylancr φ X U H MndHom mulGrp fld X U H MndHom M
54 21 53 mpbid φ X U H MndHom M
55 4 5 unitgrp Z Ring H Grp
56 16 55 syl φ H Grp
57 6 cnmgpabl M Abel
58 ablgrp M Abel M Grp
59 57 58 ax-mp M Grp
60 ghmmhmb H Grp M Grp H GrpHom M = H MndHom M
61 56 59 60 sylancl φ H GrpHom M = H MndHom M
62 54 61 eleqtrrd φ X U H GrpHom M