Step |
Hyp |
Ref |
Expression |
1 |
|
sumdchr.g |
|
2 |
|
sumdchr.d |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
znfi |
|
6 |
1 2
|
dchrfi |
|
7 |
|
simprr |
|
8 |
1 3 2 4 7
|
dchrf |
|
9 |
|
simprl |
|
10 |
8 9
|
ffvelrnd |
|
11 |
5 6 10
|
fsumcom |
|
12 |
|
eqid |
|
13 |
|
simpl |
|
14 |
|
simpr |
|
15 |
1 2 3 12 4 13 14
|
sumdchr2 |
|
16 |
|
velsn |
|
17 |
|
ifbi |
|
18 |
16 17
|
mp1i |
|
19 |
15 18
|
eqtr4d |
|
20 |
19
|
sumeq2dv |
|
21 |
|
eqid |
|
22 |
|
simpr |
|
23 |
1 3 2 21 22 4
|
dchrsum |
|
24 |
|
velsn |
|
25 |
|
ifbi |
|
26 |
24 25
|
mp1i |
|
27 |
23 26
|
eqtr4d |
|
28 |
27
|
sumeq2dv |
|
29 |
11 20 28
|
3eqtr3d |
|
30 |
|
nnnn0 |
|
31 |
3
|
zncrng |
|
32 |
|
crngring |
|
33 |
4 12
|
ringidcl |
|
34 |
30 31 32 33
|
4syl |
|
35 |
34
|
snssd |
|
36 |
|
hashcl |
|
37 |
|
nn0cn |
|
38 |
6 36 37
|
3syl |
|
39 |
38
|
ralrimivw |
|
40 |
5
|
olcd |
|
41 |
|
sumss2 |
|
42 |
35 39 40 41
|
syl21anc |
|
43 |
1
|
dchrabl |
|
44 |
|
ablgrp |
|
45 |
2 21
|
grpidcl |
|
46 |
43 44 45
|
3syl |
|
47 |
46
|
snssd |
|
48 |
|
phicl |
|
49 |
48
|
nncnd |
|
50 |
49
|
ralrimivw |
|
51 |
6
|
olcd |
|
52 |
|
sumss2 |
|
53 |
47 50 51 52
|
syl21anc |
|
54 |
29 42 53
|
3eqtr4d |
|
55 |
|
eqidd |
|
56 |
55
|
sumsn |
|
57 |
34 38 56
|
syl2anc |
|
58 |
|
eqidd |
|
59 |
58
|
sumsn |
|
60 |
46 49 59
|
syl2anc |
|
61 |
54 57 60
|
3eqtr3d |
|