Metamath Proof Explorer


Theorem dchrinv

Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of X are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrabs.g G = DChr N
dchrabs.d D = Base G
dchrabs.x φ X D
dchrinv.i I = inv g G
Assertion dchrinv φ I X = * X

Proof

Step Hyp Ref Expression
1 dchrabs.g G = DChr N
2 dchrabs.d D = Base G
3 dchrabs.x φ X D
4 dchrinv.i I = inv g G
5 eqid /N = /N
6 eqid + G = + G
7 cjf * :
8 eqid Base /N = Base /N
9 1 5 2 8 3 dchrf φ X : Base /N
10 fco * : X : Base /N * X : Base /N
11 7 9 10 sylancr φ * X : Base /N
12 eqid Unit /N = Unit /N
13 1 2 dchrrcl X D N
14 3 13 syl φ N
15 1 5 8 12 14 2 dchrelbas3 φ X D X : Base /N x Unit /N y Unit /N X x /N y = X x X y X 1 /N = 1 x Base /N X x 0 x Unit /N
16 3 15 mpbid φ X : Base /N x Unit /N y Unit /N X x /N y = X x X y X 1 /N = 1 x Base /N X x 0 x Unit /N
17 16 simprd φ x Unit /N y Unit /N X x /N y = X x X y X 1 /N = 1 x Base /N X x 0 x Unit /N
18 17 simp1d φ x Unit /N y Unit /N X x /N y = X x X y
19 18 r19.21bi φ x Unit /N y Unit /N X x /N y = X x X y
20 19 r19.21bi φ x Unit /N y Unit /N X x /N y = X x X y
21 20 anasss φ x Unit /N y Unit /N X x /N y = X x X y
22 21 fveq2d φ x Unit /N y Unit /N X x /N y = X x X y
23 9 adantr φ x Unit /N y Unit /N X : Base /N
24 8 12 unitss Unit /N Base /N
25 simprl φ x Unit /N y Unit /N x Unit /N
26 24 25 sselid φ x Unit /N y Unit /N x Base /N
27 23 26 ffvelrnd φ x Unit /N y Unit /N X x
28 simprr φ x Unit /N y Unit /N y Unit /N
29 24 28 sselid φ x Unit /N y Unit /N y Base /N
30 23 29 ffvelrnd φ x Unit /N y Unit /N X y
31 27 30 cjmuld φ x Unit /N y Unit /N X x X y = X x X y
32 22 31 eqtrd φ x Unit /N y Unit /N X x /N y = X x X y
33 14 nnnn0d φ N 0
34 5 zncrng N 0 /N CRing
35 crngring /N CRing /N Ring
36 33 34 35 3syl φ /N Ring
37 36 adantr φ x Unit /N y Unit /N /N Ring
38 eqid /N = /N
39 8 38 ringcl /N Ring x Base /N y Base /N x /N y Base /N
40 37 26 29 39 syl3anc φ x Unit /N y Unit /N x /N y Base /N
41 fvco3 X : Base /N x /N y Base /N * X x /N y = X x /N y
42 23 40 41 syl2anc φ x Unit /N y Unit /N * X x /N y = X x /N y
43 fvco3 X : Base /N x Base /N * X x = X x
44 23 26 43 syl2anc φ x Unit /N y Unit /N * X x = X x
45 fvco3 X : Base /N y Base /N * X y = X y
46 23 29 45 syl2anc φ x Unit /N y Unit /N * X y = X y
47 44 46 oveq12d φ x Unit /N y Unit /N * X x * X y = X x X y
48 32 42 47 3eqtr4d φ x Unit /N y Unit /N * X x /N y = * X x * X y
49 48 ralrimivva φ x Unit /N y Unit /N * X x /N y = * X x * X y
50 eqid 1 /N = 1 /N
51 8 50 ringidcl /N Ring 1 /N Base /N
52 36 51 syl φ 1 /N Base /N
53 fvco3 X : Base /N 1 /N Base /N * X 1 /N = X 1 /N
54 9 52 53 syl2anc φ * X 1 /N = X 1 /N
55 17 simp2d φ X 1 /N = 1
56 55 fveq2d φ X 1 /N = 1
57 1re 1
58 cjre 1 1 = 1
59 57 58 ax-mp 1 = 1
60 56 59 eqtrdi φ X 1 /N = 1
61 54 60 eqtrd φ * X 1 /N = 1
62 17 simp3d φ x Base /N X x 0 x Unit /N
63 9 43 sylan φ x Base /N * X x = X x
64 cj0 0 = 0
65 64 eqcomi 0 = 0
66 65 a1i φ x Base /N 0 = 0
67 63 66 eqeq12d φ x Base /N * X x = 0 X x = 0
68 9 ffvelrnda φ x Base /N X x
69 0cn 0
70 cj11 X x 0 X x = 0 X x = 0
71 68 69 70 sylancl φ x Base /N X x = 0 X x = 0
72 67 71 bitrd φ x Base /N * X x = 0 X x = 0
73 72 necon3bid φ x Base /N * X x 0 X x 0
74 73 imbi1d φ x Base /N * X x 0 x Unit /N X x 0 x Unit /N
75 74 ralbidva φ x Base /N * X x 0 x Unit /N x Base /N X x 0 x Unit /N
76 62 75 mpbird φ x Base /N * X x 0 x Unit /N
77 49 61 76 3jca φ x Unit /N y Unit /N * X x /N y = * X x * X y * X 1 /N = 1 x Base /N * X x 0 x Unit /N
78 1 5 8 12 14 2 dchrelbas3 φ * X D * X : Base /N x Unit /N y Unit /N * X x /N y = * X x * X y * X 1 /N = 1 x Base /N * X x 0 x Unit /N
79 11 77 78 mpbir2and φ * X D
80 1 5 2 6 3 79 dchrmul φ X + G * X = X × f * X
81 80 adantr φ x Unit /N X + G * X = X × f * X
82 81 fveq1d φ x Unit /N X + G * X x = X × f * X x
83 24 sseli x Unit /N x Base /N
84 83 63 sylan2 φ x Unit /N * X x = X x
85 84 oveq2d φ x Unit /N X x * X x = X x X x
86 83 68 sylan2 φ x Unit /N X x
87 86 absvalsqd φ x Unit /N X x 2 = X x X x
88 3 adantr φ x Unit /N X D
89 simpr φ x Unit /N x Unit /N
90 1 2 88 5 12 89 dchrabs φ x Unit /N X x = 1
91 90 oveq1d φ x Unit /N X x 2 = 1 2
92 sq1 1 2 = 1
93 91 92 eqtrdi φ x Unit /N X x 2 = 1
94 85 87 93 3eqtr2d φ x Unit /N X x * X x = 1
95 9 adantr φ x Unit /N X : Base /N
96 95 ffnd φ x Unit /N X Fn Base /N
97 11 ffnd φ * X Fn Base /N
98 97 adantr φ x Unit /N * X Fn Base /N
99 fvexd φ x Unit /N Base /N V
100 83 adantl φ x Unit /N x Base /N
101 fnfvof X Fn Base /N * X Fn Base /N Base /N V x Base /N X × f * X x = X x * X x
102 96 98 99 100 101 syl22anc φ x Unit /N X × f * X x = X x * X x
103 eqid 0 G = 0 G
104 14 adantr φ x Unit /N N
105 1 5 103 12 104 89 dchr1 φ x Unit /N 0 G x = 1
106 94 102 105 3eqtr4d φ x Unit /N X × f * X x = 0 G x
107 82 106 eqtrd φ x Unit /N X + G * X x = 0 G x
108 107 ralrimiva φ x Unit /N X + G * X x = 0 G x
109 1 5 2 6 3 79 dchrmulcl φ X + G * X D
110 1 dchrabl N G Abel
111 ablgrp G Abel G Grp
112 14 110 111 3syl φ G Grp
113 2 103 grpidcl G Grp 0 G D
114 112 113 syl φ 0 G D
115 1 5 2 12 109 114 dchreq φ X + G * X = 0 G x Unit /N X + G * X x = 0 G x
116 108 115 mpbird φ X + G * X = 0 G
117 2 6 103 4 grpinvid1 G Grp X D * X D I X = * X X + G * X = 0 G
118 112 3 79 117 syl3anc φ I X = * X X + G * X = 0 G
119 116 118 mpbird φ I X = * X