Metamath Proof Explorer


Theorem dchrinvcl

Description: Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrn0.b B = Base Z
dchrn0.u U = Unit Z
dchr1cl.o 1 ˙ = k B if k U 1 0
dchrmulid2.t · ˙ = + G
dchrmulid2.x φ X D
dchrinvcl.n K = k B if k U 1 X k 0
Assertion dchrinvcl φ K D K · ˙ X = 1 ˙

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrn0.b B = Base Z
5 dchrn0.u U = Unit Z
6 dchr1cl.o 1 ˙ = k B if k U 1 0
7 dchrmulid2.t · ˙ = + G
8 dchrmulid2.x φ X D
9 dchrinvcl.n K = k B if k U 1 X k 0
10 1 3 dchrrcl X D N
11 8 10 syl φ N
12 fveq2 k = x X k = X x
13 12 oveq2d k = x 1 X k = 1 X x
14 fveq2 k = y X k = X y
15 14 oveq2d k = y 1 X k = 1 X y
16 fveq2 k = x Z y X k = X x Z y
17 16 oveq2d k = x Z y 1 X k = 1 X x Z y
18 fveq2 k = 1 Z X k = X 1 Z
19 18 oveq2d k = 1 Z 1 X k = 1 X 1 Z
20 1 2 3 4 8 dchrf φ X : B
21 4 5 unitss U B
22 21 sseli k U k B
23 ffvelrn X : B k B X k
24 20 22 23 syl2an φ k U X k
25 simpr φ k U k U
26 8 adantr φ k U X D
27 22 adantl φ k U k B
28 1 2 3 4 5 26 27 dchrn0 φ k U X k 0 k U
29 25 28 mpbird φ k U X k 0
30 24 29 reccld φ k U 1 X k
31 1t1e1 1 1 = 1
32 31 eqcomi 1 = 1 1
33 32 a1i φ x U y U 1 = 1 1
34 1 2 3 dchrmhm D mulGrp Z MndHom mulGrp fld
35 8 adantr φ x U y U X D
36 34 35 sselid φ x U y U X mulGrp Z MndHom mulGrp fld
37 simprl φ x U y U x U
38 21 37 sselid φ x U y U x B
39 simprr φ x U y U y U
40 21 39 sselid φ x U y U y B
41 eqid mulGrp Z = mulGrp Z
42 41 4 mgpbas B = Base mulGrp Z
43 eqid Z = Z
44 41 43 mgpplusg Z = + mulGrp Z
45 eqid mulGrp fld = mulGrp fld
46 cnfldmul × = fld
47 45 46 mgpplusg × = + mulGrp fld
48 42 44 47 mhmlin X mulGrp Z MndHom mulGrp fld x B y B X x Z y = X x X y
49 36 38 40 48 syl3anc φ x U y U X x Z y = X x X y
50 33 49 oveq12d φ x U y U 1 X x Z y = 1 1 X x X y
51 1cnd φ x U y U 1
52 20 adantr φ x U y U X : B
53 52 38 ffvelrnd φ x U y U X x
54 52 40 ffvelrnd φ x U y U X y
55 1 2 3 4 5 35 38 dchrn0 φ x U y U X x 0 x U
56 37 55 mpbird φ x U y U X x 0
57 1 2 3 4 5 35 40 dchrn0 φ x U y U X y 0 y U
58 39 57 mpbird φ x U y U X y 0
59 51 53 51 54 56 58 divmuldivd φ x U y U 1 X x 1 X y = 1 1 X x X y
60 50 59 eqtr4d φ x U y U 1 X x Z y = 1 X x 1 X y
61 34 8 sselid φ X mulGrp Z MndHom mulGrp fld
62 eqid 1 Z = 1 Z
63 41 62 ringidval 1 Z = 0 mulGrp Z
64 cnfld1 1 = 1 fld
65 45 64 ringidval 1 = 0 mulGrp fld
66 63 65 mhm0 X mulGrp Z MndHom mulGrp fld X 1 Z = 1
67 61 66 syl φ X 1 Z = 1
68 67 oveq2d φ 1 X 1 Z = 1 1
69 1div1e1 1 1 = 1
70 68 69 eqtrdi φ 1 X 1 Z = 1
71 1 2 4 5 11 3 13 15 17 19 30 60 70 dchrelbasd φ k B if k U 1 X k 0 D
72 9 71 eqeltrid φ K D
73 1 2 3 7 72 8 dchrmul φ K · ˙ X = K × f X
74 4 fvexi B V
75 74 a1i φ B V
76 ovex 1 X k V
77 c0ex 0 V
78 76 77 ifex if k U 1 X k 0 V
79 78 a1i φ k B if k U 1 X k 0 V
80 20 ffvelrnda φ k B X k
81 9 a1i φ K = k B if k U 1 X k 0
82 20 feqmptd φ X = k B X k
83 75 79 80 81 82 offval2 φ K × f X = k B if k U 1 X k 0 X k
84 ovif if k U 1 X k 0 X k = if k U 1 X k X k 0 X k
85 80 adantr φ k B k U X k
86 8 adantr φ k B X D
87 simpr φ k B k B
88 1 2 3 4 5 86 87 dchrn0 φ k B X k 0 k U
89 88 biimpar φ k B k U X k 0
90 85 89 recid2d φ k B k U 1 X k X k = 1
91 90 ifeq1da φ k B if k U 1 X k X k 0 X k = if k U 1 0 X k
92 80 mul02d φ k B 0 X k = 0
93 92 ifeq2d φ k B if k U 1 0 X k = if k U 1 0
94 91 93 eqtrd φ k B if k U 1 X k X k 0 X k = if k U 1 0
95 84 94 syl5eq φ k B if k U 1 X k 0 X k = if k U 1 0
96 95 mpteq2dva φ k B if k U 1 X k 0 X k = k B if k U 1 0
97 6 96 eqtr4id φ 1 ˙ = k B if k U 1 X k 0 X k
98 83 97 eqtr4d φ K × f X = 1 ˙
99 73 98 eqtrd φ K · ˙ X = 1 ˙
100 72 99 jca φ K D K · ˙ X = 1 ˙