Metamath Proof Explorer


Theorem dchrisum

Description: If n e. [ M , +oo ) |-> A ( n ) is a positive decreasing function approaching zero, then the infinite sum sum_ n , X ( n ) A ( n ) is convergent, with the partial sum sum_ n <_ x , X ( n ) A ( n ) within O ( A ( M ) ) of the limit T . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrisum.2 n = x A = B
dchrisum.3 φ M
dchrisum.4 φ n + A
dchrisum.5 φ n + x + M n n x B A
dchrisum.6 φ n + A 0
dchrisum.7 F = n X L n A
Assertion dchrisum φ t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrisum.2 n = x A = B
10 dchrisum.3 φ M
11 dchrisum.4 φ n + A
12 dchrisum.5 φ n + x + M n n x B A
13 dchrisum.6 φ n + A 0
14 dchrisum.7 F = n X L n A
15 fzofi 0 ..^ N Fin
16 fzofi 0 ..^ u Fin
17 16 a1i φ 0 ..^ u Fin
18 7 adantr φ m 0 ..^ u X D
19 elfzoelz m 0 ..^ u m
20 19 adantl φ m 0 ..^ u m
21 4 1 5 2 18 20 dchrzrhcl φ m 0 ..^ u X L m
22 17 21 fsumcl φ m 0 ..^ u X L m
23 22 abscld φ m 0 ..^ u X L m
24 23 ralrimivw φ u 0 ..^ N m 0 ..^ u X L m
25 fimaxre3 0 ..^ N Fin u 0 ..^ N m 0 ..^ u X L m r u 0 ..^ N m 0 ..^ u X L m r
26 15 24 25 sylancr φ r u 0 ..^ N m 0 ..^ u X L m r
27 3 adantr φ r u 0 ..^ N m 0 ..^ u X L m r N
28 7 adantr φ r u 0 ..^ N m 0 ..^ u X L m r X D
29 8 adantr φ r u 0 ..^ N m 0 ..^ u X L m r X 1 ˙
30 10 adantr φ r u 0 ..^ N m 0 ..^ u X L m r M
31 11 adantlr φ r u 0 ..^ N m 0 ..^ u X L m r n + A
32 12 3adant1r φ r u 0 ..^ N m 0 ..^ u X L m r n + x + M n n x B A
33 13 adantr φ r u 0 ..^ N m 0 ..^ u X L m r n + A 0
34 simprl φ r u 0 ..^ N m 0 ..^ u X L m r r
35 simprr φ r u 0 ..^ N m 0 ..^ u X L m r u 0 ..^ N m 0 ..^ u X L m r
36 2fveq3 m = n X L m = X L n
37 36 cbvsumv m 0 ..^ u X L m = n 0 ..^ u X L n
38 oveq2 u = i 0 ..^ u = 0 ..^ i
39 38 sumeq1d u = i n 0 ..^ u X L n = n 0 ..^ i X L n
40 37 39 syl5eq u = i m 0 ..^ u X L m = n 0 ..^ i X L n
41 40 fveq2d u = i m 0 ..^ u X L m = n 0 ..^ i X L n
42 41 breq1d u = i m 0 ..^ u X L m r n 0 ..^ i X L n r
43 42 cbvralvw u 0 ..^ N m 0 ..^ u X L m r i 0 ..^ N n 0 ..^ i X L n r
44 35 43 sylib φ r u 0 ..^ N m 0 ..^ u X L m r i 0 ..^ N n 0 ..^ i X L n r
45 1 2 27 4 5 6 28 29 9 30 31 32 33 14 34 44 dchrisumlem3 φ r u 0 ..^ N m 0 ..^ u X L m r t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B
46 26 45 rexlimddv φ t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B