Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum2.g |
|
5 |
|
rpvmasum2.d |
|
6 |
|
rpvmasum2.1 |
|
7 |
|
rpvmasum2.w |
|
8 |
|
dchrisum0.b |
|
9 |
|
eqid |
|
10 |
7
|
ssrab3 |
|
11 |
|
difss |
|
12 |
10 11
|
sstri |
|
13 |
12 8
|
sselid |
|
14 |
1 2 3 4 5 6 7 8
|
dchrisum0re |
|
15 |
|
fveq2 |
|
16 |
15
|
oveq2d |
|
17 |
|
rpre |
|
18 |
17
|
adantl |
|
19 |
13
|
ad3antrrr |
|
20 |
|
elrabi |
|
21 |
20
|
nnzd |
|
22 |
21
|
adantl |
|
23 |
4 1 5 2 19 22
|
dchrzrhcl |
|
24 |
|
elfznn |
|
25 |
24
|
adantl |
|
26 |
25
|
nnrpd |
|
27 |
26
|
rpsqrtcld |
|
28 |
27
|
rpcnd |
|
29 |
28
|
adantr |
|
30 |
27
|
rpne0d |
|
31 |
30
|
adantr |
|
32 |
23 29 31
|
divcld |
|
33 |
32
|
anasss |
|
34 |
16 18 33
|
dvdsflsumcom |
|
35 |
1 2 3 4 5 6 9
|
dchrisum0fval |
|
36 |
25 35
|
syl |
|
37 |
36
|
oveq1d |
|
38 |
|
fzfid |
|
39 |
|
dvdsssfz1 |
|
40 |
25 39
|
syl |
|
41 |
38 40
|
ssfid |
|
42 |
41 28 23 30
|
fsumdivc |
|
43 |
37 42
|
eqtrd |
|
44 |
43
|
sumeq2dv |
|
45 |
|
rprege0 |
|
46 |
45
|
adantl |
|
47 |
|
resqrtth |
|
48 |
46 47
|
syl |
|
49 |
48
|
fveq2d |
|
50 |
49
|
oveq2d |
|
51 |
48
|
fvoveq1d |
|
52 |
51
|
oveq2d |
|
53 |
52
|
sumeq1d |
|
54 |
53
|
adantr |
|
55 |
50 54
|
sumeq12dv |
|
56 |
34 44 55
|
3eqtr4d |
|
57 |
56
|
mpteq2dva |
|
58 |
|
rpsqrtcl |
|
59 |
58
|
adantl |
|
60 |
|
eqidd |
|
61 |
|
eqidd |
|
62 |
|
oveq1 |
|
63 |
62
|
fveq2d |
|
64 |
63
|
oveq2d |
|
65 |
62
|
fvoveq1d |
|
66 |
65
|
oveq2d |
|
67 |
66
|
sumeq1d |
|
68 |
67
|
adantr |
|
69 |
64 68
|
sumeq12dv |
|
70 |
59 60 61 69
|
fmptco |
|
71 |
57 70
|
eqtr4d |
|
72 |
|
eqid |
|
73 |
1 2 3 4 5 6 7 8 72
|
dchrisum0lema |
|
74 |
3
|
adantr |
|
75 |
8
|
adantr |
|
76 |
|
simprl |
|
77 |
|
simprrl |
|
78 |
|
simprrr |
|
79 |
1 2 74 4 5 6 7 75 72 76 77 78
|
dchrisum0lem3 |
|
80 |
79
|
rexlimdvaa |
|
81 |
80
|
exlimdv |
|
82 |
73 81
|
mpd |
|
83 |
|
o1f |
|
84 |
82 83
|
syl |
|
85 |
|
sumex |
|
86 |
|
eqid |
|
87 |
85 86
|
dmmpti |
|
88 |
87
|
feq2i |
|
89 |
84 88
|
sylib |
|
90 |
|
rpssre |
|
91 |
90
|
a1i |
|
92 |
|
resqcl |
|
93 |
|
0red |
|
94 |
|
simplr |
|
95 |
|
simplrr |
|
96 |
45
|
ad2antrl |
|
97 |
96
|
adantr |
|
98 |
97 47
|
syl |
|
99 |
95 98
|
breqtrrd |
|
100 |
94
|
adantr |
|
101 |
59
|
rpred |
|
102 |
101
|
ad2ant2r |
|
103 |
102
|
adantr |
|
104 |
|
simpr |
|
105 |
|
sqrtge0 |
|
106 |
96 105
|
syl |
|
107 |
106
|
adantr |
|
108 |
100 103 104 107
|
le2sqd |
|
109 |
99 108
|
mpbird |
|
110 |
94
|
adantr |
|
111 |
|
0red |
|
112 |
102
|
adantr |
|
113 |
|
simpr |
|
114 |
106
|
adantr |
|
115 |
110 111 112 113 114
|
letrd |
|
116 |
93 94 109 115
|
lecasei |
|
117 |
116
|
expr |
|
118 |
117
|
ralrimiva |
|
119 |
|
breq1 |
|
120 |
119
|
rspceaimv |
|
121 |
92 118 120
|
syl2an2 |
|
122 |
89 82 59 91 121
|
o1compt |
|
123 |
71 122
|
eqeltrd |
|
124 |
1 2 3 4 5 6 9 13 14 123
|
dchrisum0fno1 |
|