| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum2.g |
|
| 5 |
|
rpvmasum2.d |
|
| 6 |
|
rpvmasum2.1 |
|
| 7 |
|
dchrisum0f.f |
|
| 8 |
|
dchrisum0f.x |
|
| 9 |
|
dchrisum0flb.r |
|
| 10 |
|
dchrisum0flblem1.1 |
|
| 11 |
|
dchrisum0flblem1.2 |
|
| 12 |
|
1red |
|
| 13 |
|
0red |
|
| 14 |
12 13
|
ifclda |
|
| 15 |
|
1red |
|
| 16 |
|
fzfid |
|
| 17 |
3
|
nnnn0d |
|
| 18 |
|
eqid |
|
| 19 |
1 18 2
|
znzrhfo |
|
| 20 |
|
fof |
|
| 21 |
17 19 20
|
3syl |
|
| 22 |
|
prmz |
|
| 23 |
10 22
|
syl |
|
| 24 |
21 23
|
ffvelcdmd |
|
| 25 |
9 24
|
ffvelcdmd |
|
| 26 |
|
elfznn0 |
|
| 27 |
|
reexpcl |
|
| 28 |
25 26 27
|
syl2an |
|
| 29 |
16 28
|
fsumrecl |
|
| 30 |
29
|
adantr |
|
| 31 |
|
breq1 |
|
| 32 |
|
breq1 |
|
| 33 |
|
1le1 |
|
| 34 |
|
0le1 |
|
| 35 |
31 32 33 34
|
keephyp |
|
| 36 |
35
|
a1i |
|
| 37 |
|
nn0uz |
|
| 38 |
11 37
|
eleqtrdi |
|
| 39 |
|
fzn0 |
|
| 40 |
38 39
|
sylibr |
|
| 41 |
|
hashnncl |
|
| 42 |
16 41
|
syl |
|
| 43 |
40 42
|
mpbird |
|
| 44 |
43
|
adantr |
|
| 45 |
44
|
nnge1d |
|
| 46 |
|
simpr |
|
| 47 |
46
|
oveq1d |
|
| 48 |
|
elfzelz |
|
| 49 |
|
1exp |
|
| 50 |
48 49
|
syl |
|
| 51 |
47 50
|
sylan9eq |
|
| 52 |
51
|
sumeq2dv |
|
| 53 |
|
fzfid |
|
| 54 |
|
ax-1cn |
|
| 55 |
|
fsumconst |
|
| 56 |
53 54 55
|
sylancl |
|
| 57 |
44
|
nncnd |
|
| 58 |
57
|
mulridd |
|
| 59 |
52 56 58
|
3eqtrd |
|
| 60 |
45 59
|
breqtrrd |
|
| 61 |
14 15 30 36 60
|
letrd |
|
| 62 |
|
oveq1 |
|
| 63 |
62
|
breq1d |
|
| 64 |
|
oveq1 |
|
| 65 |
64
|
breq1d |
|
| 66 |
|
1re |
|
| 67 |
25
|
adantr |
|
| 68 |
|
resubcl |
|
| 69 |
66 67 68
|
sylancr |
|
| 70 |
69
|
adantr |
|
| 71 |
70
|
leidd |
|
| 72 |
69
|
recnd |
|
| 73 |
72
|
adantr |
|
| 74 |
73
|
mullidd |
|
| 75 |
|
nn0p1nn |
|
| 76 |
11 75
|
syl |
|
| 77 |
76
|
ad3antrrr |
|
| 78 |
77
|
0expd |
|
| 79 |
|
simpr |
|
| 80 |
79
|
oveq1d |
|
| 81 |
78 80 79
|
3eqtr4d |
|
| 82 |
|
neg1cn |
|
| 83 |
11
|
ad2antrr |
|
| 84 |
|
expp1 |
|
| 85 |
82 83 84
|
sylancr |
|
| 86 |
|
prmnn |
|
| 87 |
10 86
|
syl |
|
| 88 |
87 11
|
nnexpcld |
|
| 89 |
88
|
nncnd |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
90
|
sqsqrtd |
|
| 92 |
91
|
oveq2d |
|
| 93 |
10
|
ad2antrr |
|
| 94 |
|
nnq |
|
| 95 |
94
|
adantl |
|
| 96 |
|
nnne0 |
|
| 97 |
96
|
adantl |
|
| 98 |
|
2z |
|
| 99 |
98
|
a1i |
|
| 100 |
|
pcexp |
|
| 101 |
93 95 97 99 100
|
syl121anc |
|
| 102 |
83
|
nn0zd |
|
| 103 |
|
pcid |
|
| 104 |
93 102 103
|
syl2anc |
|
| 105 |
92 101 104
|
3eqtr3rd |
|
| 106 |
105
|
oveq2d |
|
| 107 |
82
|
a1i |
|
| 108 |
|
simpr |
|
| 109 |
93 108
|
pccld |
|
| 110 |
|
2nn0 |
|
| 111 |
110
|
a1i |
|
| 112 |
107 109 111
|
expmuld |
|
| 113 |
|
neg1sqe1 |
|
| 114 |
113
|
oveq1i |
|
| 115 |
109
|
nn0zd |
|
| 116 |
|
1exp |
|
| 117 |
115 116
|
syl |
|
| 118 |
114 117
|
eqtrid |
|
| 119 |
106 112 118
|
3eqtrd |
|
| 120 |
119
|
oveq1d |
|
| 121 |
82
|
mullidi |
|
| 122 |
120 121
|
eqtrdi |
|
| 123 |
85 122
|
eqtrd |
|
| 124 |
123
|
adantr |
|
| 125 |
25
|
recnd |
|
| 126 |
125
|
adantr |
|
| 127 |
126
|
ad2antrr |
|
| 128 |
127
|
negnegd |
|
| 129 |
|
simpr |
|
| 130 |
129
|
ad2antrr |
|
| 131 |
8
|
ad3antrrr |
|
| 132 |
|
eqid |
|
| 133 |
4 1 5 18 132 8 24
|
dchrn0 |
|
| 134 |
133
|
ad2antrr |
|
| 135 |
134
|
biimpa |
|
| 136 |
4 5 131 1 132 135
|
dchrabs |
|
| 137 |
|
eqeq1 |
|
| 138 |
136 137
|
syl5ibcom |
|
| 139 |
138
|
necon3ad |
|
| 140 |
130 139
|
mpd |
|
| 141 |
67
|
ad2antrr |
|
| 142 |
141
|
absord |
|
| 143 |
142
|
ord |
|
| 144 |
140 143
|
mpd |
|
| 145 |
144 136
|
eqtr3d |
|
| 146 |
145
|
negeqd |
|
| 147 |
128 146
|
eqtr3d |
|
| 148 |
147
|
oveq1d |
|
| 149 |
124 148 147
|
3eqtr4d |
|
| 150 |
81 149
|
pm2.61dane |
|
| 151 |
150
|
oveq2d |
|
| 152 |
71 74 151
|
3brtr4d |
|
| 153 |
72
|
mul02d |
|
| 154 |
|
peano2nn0 |
|
| 155 |
11 154
|
syl |
|
| 156 |
25 155
|
reexpcld |
|
| 157 |
156
|
adantr |
|
| 158 |
157
|
recnd |
|
| 159 |
158
|
abscld |
|
| 160 |
|
1red |
|
| 161 |
157
|
leabsd |
|
| 162 |
155
|
adantr |
|
| 163 |
126 162
|
absexpd |
|
| 164 |
126
|
abscld |
|
| 165 |
126
|
absge0d |
|
| 166 |
4 5 1 18 8 24
|
dchrabs2 |
|
| 167 |
166
|
adantr |
|
| 168 |
|
exple1 |
|
| 169 |
164 165 167 162 168
|
syl31anc |
|
| 170 |
163 169
|
eqbrtrd |
|
| 171 |
157 159 160 161 170
|
letrd |
|
| 172 |
|
subge0 |
|
| 173 |
66 157 172
|
sylancr |
|
| 174 |
171 173
|
mpbird |
|
| 175 |
153 174
|
eqbrtrd |
|
| 176 |
175
|
adantr |
|
| 177 |
63 65 152 176
|
ifbothda |
|
| 178 |
|
0re |
|
| 179 |
66 178
|
ifcli |
|
| 180 |
179
|
a1i |
|
| 181 |
|
resubcl |
|
| 182 |
66 157 181
|
sylancr |
|
| 183 |
67
|
leabsd |
|
| 184 |
67 164 160 183 167
|
letrd |
|
| 185 |
129
|
necomd |
|
| 186 |
67 160 184 185
|
leneltd |
|
| 187 |
|
posdif |
|
| 188 |
67 66 187
|
sylancl |
|
| 189 |
186 188
|
mpbid |
|
| 190 |
|
lemuldiv |
|
| 191 |
180 182 69 189 190
|
syl112anc |
|
| 192 |
177 191
|
mpbid |
|
| 193 |
11
|
nn0zd |
|
| 194 |
|
fzval3 |
|
| 195 |
193 194
|
syl |
|
| 196 |
195
|
adantr |
|
| 197 |
196
|
sumeq1d |
|
| 198 |
|
0nn0 |
|
| 199 |
198
|
a1i |
|
| 200 |
155 37
|
eleqtrdi |
|
| 201 |
200
|
adantr |
|
| 202 |
126 129 199 201
|
geoserg |
|
| 203 |
126
|
exp0d |
|
| 204 |
203
|
oveq1d |
|
| 205 |
204
|
oveq1d |
|
| 206 |
197 202 205
|
3eqtrd |
|
| 207 |
192 206
|
breqtrrd |
|
| 208 |
61 207
|
pm2.61dane |
|
| 209 |
1 2 3 4 5 6 7
|
dchrisum0fval |
|
| 210 |
88 209
|
syl |
|
| 211 |
|
2fveq3 |
|
| 212 |
|
eqid |
|
| 213 |
212
|
dvdsppwf1o |
|
| 214 |
10 11 213
|
syl2anc |
|
| 215 |
|
oveq2 |
|
| 216 |
|
ovex |
|
| 217 |
215 212 216
|
fvmpt3i |
|
| 218 |
217
|
adantl |
|
| 219 |
9
|
adantr |
|
| 220 |
|
elrabi |
|
| 221 |
220
|
nnzd |
|
| 222 |
|
ffvelcdm |
|
| 223 |
21 221 222
|
syl2an |
|
| 224 |
219 223
|
ffvelcdmd |
|
| 225 |
224
|
recnd |
|
| 226 |
211 16 214 218 225
|
fsumf1o |
|
| 227 |
|
zsubrg |
|
| 228 |
|
eqid |
|
| 229 |
228
|
subrgsubm |
|
| 230 |
227 229
|
mp1i |
|
| 231 |
26
|
adantl |
|
| 232 |
23
|
adantr |
|
| 233 |
|
eqid |
|
| 234 |
|
zringmpg |
|
| 235 |
234
|
eqcomi |
|
| 236 |
|
eqid |
|
| 237 |
233 235 236
|
submmulg |
|
| 238 |
230 231 232 237
|
syl3anc |
|
| 239 |
87
|
nncnd |
|
| 240 |
|
cnfldexp |
|
| 241 |
239 26 240
|
syl2an |
|
| 242 |
238 241
|
eqtr3d |
|
| 243 |
242
|
fveq2d |
|
| 244 |
1
|
zncrng |
|
| 245 |
|
crngring |
|
| 246 |
17 244 245
|
3syl |
|
| 247 |
2
|
zrhrhm |
|
| 248 |
|
eqid |
|
| 249 |
|
eqid |
|
| 250 |
248 249
|
rhmmhm |
|
| 251 |
246 247 250
|
3syl |
|
| 252 |
251
|
adantr |
|
| 253 |
|
zringbas |
|
| 254 |
248 253
|
mgpbas |
|
| 255 |
|
eqid |
|
| 256 |
254 236 255
|
mhmmulg |
|
| 257 |
252 231 232 256
|
syl3anc |
|
| 258 |
243 257
|
eqtr3d |
|
| 259 |
258
|
fveq2d |
|
| 260 |
4 1 5
|
dchrmhm |
|
| 261 |
260 8
|
sselid |
|
| 262 |
261
|
adantr |
|
| 263 |
24
|
adantr |
|
| 264 |
249 18
|
mgpbas |
|
| 265 |
264 255 233
|
mhmmulg |
|
| 266 |
262 231 263 265
|
syl3anc |
|
| 267 |
|
cnfldexp |
|
| 268 |
125 26 267
|
syl2an |
|
| 269 |
259 266 268
|
3eqtrd |
|
| 270 |
269
|
sumeq2dv |
|
| 271 |
210 226 270
|
3eqtrd |
|
| 272 |
208 271
|
breqtrrd |
|