Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum2.g |
|
5 |
|
rpvmasum2.d |
|
6 |
|
rpvmasum2.1 |
|
7 |
|
dchrisum0f.f |
|
8 |
|
dchrisum0f.x |
|
9 |
|
dchrisum0flb.r |
|
10 |
|
dchrisum0fno1.a |
|
11 |
|
logno1 |
|
12 |
|
relogcl |
|
13 |
12
|
adantl |
|
14 |
13
|
recnd |
|
15 |
|
2cnd |
|
16 |
|
2ne0 |
|
17 |
16
|
a1i |
|
18 |
14 15 17
|
divcan2d |
|
19 |
18
|
mpteq2dva |
|
20 |
13
|
rehalfcld |
|
21 |
20
|
recnd |
|
22 |
|
rpssre |
|
23 |
|
2cn |
|
24 |
|
o1const |
|
25 |
22 23 24
|
mp2an |
|
26 |
25
|
a1i |
|
27 |
|
1red |
|
28 |
|
sumex |
|
29 |
28
|
a1i |
|
30 |
20
|
adantrr |
|
31 |
12
|
ad2antrl |
|
32 |
|
log1 |
|
33 |
|
simprr |
|
34 |
|
1rp |
|
35 |
|
simprl |
|
36 |
|
logleb |
|
37 |
34 35 36
|
sylancr |
|
38 |
33 37
|
mpbid |
|
39 |
32 38
|
eqbrtrrid |
|
40 |
|
2re |
|
41 |
40
|
a1i |
|
42 |
|
2pos |
|
43 |
42
|
a1i |
|
44 |
|
divge0 |
|
45 |
31 39 41 43 44
|
syl22anc |
|
46 |
30 45
|
absidd |
|
47 |
|
fzfid |
|
48 |
1 2 3 4 5 6 7 8 9
|
dchrisum0ff |
|
49 |
48
|
adantr |
|
50 |
|
elfznn |
|
51 |
|
ffvelrn |
|
52 |
49 50 51
|
syl2an |
|
53 |
50
|
adantl |
|
54 |
53
|
nnrpd |
|
55 |
54
|
rpsqrtcld |
|
56 |
52 55
|
rerpdivcld |
|
57 |
47 56
|
fsumrecl |
|
58 |
57
|
recnd |
|
59 |
58
|
abscld |
|
60 |
|
fzfid |
|
61 |
|
elfznn |
|
62 |
61
|
adantl |
|
63 |
62
|
nnrecred |
|
64 |
60 63
|
fsumrecl |
|
65 |
|
logsqrt |
|
66 |
65
|
ad2antrl |
|
67 |
|
rpsqrtcl |
|
68 |
67
|
ad2antrl |
|
69 |
|
harmoniclbnd |
|
70 |
68 69
|
syl |
|
71 |
66 70
|
eqbrtrrd |
|
72 |
|
eqid |
|
73 |
|
ovex |
|
74 |
72 73
|
elrnmpti |
|
75 |
|
elfznn |
|
76 |
75
|
adantl |
|
77 |
76
|
nnrpd |
|
78 |
77
|
rprege0d |
|
79 |
|
sqrtsq |
|
80 |
78 79
|
syl |
|
81 |
80 76
|
eqeltrd |
|
82 |
|
fveq2 |
|
83 |
82
|
eleq1d |
|
84 |
81 83
|
syl5ibrcom |
|
85 |
84
|
rexlimdva |
|
86 |
74 85
|
syl5bi |
|
87 |
86
|
imp |
|
88 |
87
|
iftrued |
|
89 |
88
|
oveq1d |
|
90 |
89
|
sumeq2dv |
|
91 |
|
fveq2 |
|
92 |
91
|
oveq2d |
|
93 |
76
|
nnsqcld |
|
94 |
68
|
rpred |
|
95 |
|
fznnfl |
|
96 |
94 95
|
syl |
|
97 |
96
|
simplbda |
|
98 |
68
|
adantr |
|
99 |
98
|
rprege0d |
|
100 |
|
le2sq |
|
101 |
78 99 100
|
syl2anc |
|
102 |
97 101
|
mpbid |
|
103 |
35
|
rpred |
|
104 |
103
|
adantr |
|
105 |
104
|
recnd |
|
106 |
105
|
sqsqrtd |
|
107 |
102 106
|
breqtrd |
|
108 |
|
fznnfl |
|
109 |
104 108
|
syl |
|
110 |
93 107 109
|
mpbir2and |
|
111 |
110
|
ex |
|
112 |
75
|
nnrpd |
|
113 |
112
|
rprege0d |
|
114 |
61
|
nnrpd |
|
115 |
114
|
rprege0d |
|
116 |
|
sq11 |
|
117 |
113 115 116
|
syl2an |
|
118 |
117
|
a1i |
|
119 |
111 118
|
dom2lem |
|
120 |
|
f1f1orn |
|
121 |
119 120
|
syl |
|
122 |
|
oveq1 |
|
123 |
122 72 73
|
fvmpt3i |
|
124 |
123
|
adantl |
|
125 |
|
f1f |
|
126 |
|
frn |
|
127 |
119 125 126
|
3syl |
|
128 |
127
|
sselda |
|
129 |
|
1re |
|
130 |
|
0re |
|
131 |
129 130
|
ifcli |
|
132 |
|
rerpdivcl |
|
133 |
131 55 132
|
sylancr |
|
134 |
133
|
recnd |
|
135 |
128 134
|
syldan |
|
136 |
89 135
|
eqeltrrd |
|
137 |
92 60 121 124 136
|
fsumf1o |
|
138 |
90 137
|
eqtrd |
|
139 |
|
eldif |
|
140 |
50
|
ad2antrl |
|
141 |
140
|
nncnd |
|
142 |
141
|
sqsqrtd |
|
143 |
|
simprr |
|
144 |
|
fznnfl |
|
145 |
103 144
|
syl |
|
146 |
145
|
simplbda |
|
147 |
146
|
adantrr |
|
148 |
140
|
nnrpd |
|
149 |
148
|
rprege0d |
|
150 |
35
|
adantr |
|
151 |
150
|
rprege0d |
|
152 |
|
sqrtle |
|
153 |
149 151 152
|
syl2anc |
|
154 |
147 153
|
mpbid |
|
155 |
68
|
adantr |
|
156 |
155
|
rpred |
|
157 |
|
fznnfl |
|
158 |
156 157
|
syl |
|
159 |
143 154 158
|
mpbir2and |
|
160 |
142 140
|
eqeltrd |
|
161 |
|
oveq1 |
|
162 |
72 161
|
elrnmpt1s |
|
163 |
159 160 162
|
syl2anc |
|
164 |
142 163
|
eqeltrrd |
|
165 |
164
|
expr |
|
166 |
165
|
con3d |
|
167 |
166
|
impr |
|
168 |
139 167
|
sylan2b |
|
169 |
168
|
iffalsed |
|
170 |
169
|
oveq1d |
|
171 |
|
eldifi |
|
172 |
171 55
|
sylan2 |
|
173 |
172
|
rpcnne0d |
|
174 |
|
div0 |
|
175 |
173 174
|
syl |
|
176 |
170 175
|
eqtrd |
|
177 |
127 135 176 47
|
fsumss |
|
178 |
62
|
nnrpd |
|
179 |
178
|
rprege0d |
|
180 |
|
sqrtsq |
|
181 |
179 180
|
syl |
|
182 |
181
|
oveq2d |
|
183 |
182
|
sumeq2dv |
|
184 |
138 177 183
|
3eqtr3d |
|
185 |
131
|
a1i |
|
186 |
3
|
ad2antrr |
|
187 |
8
|
ad2antrr |
|
188 |
9
|
ad2antrr |
|
189 |
1 2 186 4 5 6 7 187 188 53
|
dchrisum0flb |
|
190 |
185 52 55 189
|
lediv1dd |
|
191 |
47 133 56 190
|
fsumle |
|
192 |
184 191
|
eqbrtrrd |
|
193 |
30 64 57 71 192
|
letrd |
|
194 |
57
|
leabsd |
|
195 |
30 57 59 193 194
|
letrd |
|
196 |
46 195
|
eqbrtrd |
|
197 |
27 10 29 21 196
|
o1le |
|
198 |
15 21 26 197
|
o1mul2 |
|
199 |
19 198
|
eqeltrrd |
|
200 |
11 199
|
mto |
|