Metamath Proof Explorer


Theorem dchrisum0fno1

Description: The sum sum_ k <_ x , F ( x ) / sqrt k is divergent (i.e. not eventually bounded). Equation 9.4.30 of Shapiro, p. 383. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
dchrisum0f.f F = b v q | q b X L v
dchrisum0f.x φ X D
dchrisum0flb.r φ X : Base Z
dchrisum0fno1.a φ x + k = 1 x F k k 𝑂1
Assertion dchrisum0fno1 ¬ φ

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 dchrisum0f.f F = b v q | q b X L v
8 dchrisum0f.x φ X D
9 dchrisum0flb.r φ X : Base Z
10 dchrisum0fno1.a φ x + k = 1 x F k k 𝑂1
11 logno1 ¬ x + log x 𝑂1
12 relogcl x + log x
13 12 adantl φ x + log x
14 13 recnd φ x + log x
15 2cnd φ x + 2
16 2ne0 2 0
17 16 a1i φ x + 2 0
18 14 15 17 divcan2d φ x + 2 log x 2 = log x
19 18 mpteq2dva φ x + 2 log x 2 = x + log x
20 13 rehalfcld φ x + log x 2
21 20 recnd φ x + log x 2
22 rpssre +
23 2cn 2
24 o1const + 2 x + 2 𝑂1
25 22 23 24 mp2an x + 2 𝑂1
26 25 a1i φ x + 2 𝑂1
27 1red φ 1
28 sumex k = 1 x F k k V
29 28 a1i φ x + k = 1 x F k k V
30 20 adantrr φ x + 1 x log x 2
31 12 ad2antrl φ x + 1 x log x
32 log1 log 1 = 0
33 simprr φ x + 1 x 1 x
34 1rp 1 +
35 simprl φ x + 1 x x +
36 logleb 1 + x + 1 x log 1 log x
37 34 35 36 sylancr φ x + 1 x 1 x log 1 log x
38 33 37 mpbid φ x + 1 x log 1 log x
39 32 38 eqbrtrrid φ x + 1 x 0 log x
40 2re 2
41 40 a1i φ x + 1 x 2
42 2pos 0 < 2
43 42 a1i φ x + 1 x 0 < 2
44 divge0 log x 0 log x 2 0 < 2 0 log x 2
45 31 39 41 43 44 syl22anc φ x + 1 x 0 log x 2
46 30 45 absidd φ x + 1 x log x 2 = log x 2
47 fzfid φ x + 1 x 1 x Fin
48 1 2 3 4 5 6 7 8 9 dchrisum0ff φ F :
49 48 adantr φ x + 1 x F :
50 elfznn k 1 x k
51 ffvelrn F : k F k
52 49 50 51 syl2an φ x + 1 x k 1 x F k
53 50 adantl φ x + 1 x k 1 x k
54 53 nnrpd φ x + 1 x k 1 x k +
55 54 rpsqrtcld φ x + 1 x k 1 x k +
56 52 55 rerpdivcld φ x + 1 x k 1 x F k k
57 47 56 fsumrecl φ x + 1 x k = 1 x F k k
58 57 recnd φ x + 1 x k = 1 x F k k
59 58 abscld φ x + 1 x k = 1 x F k k
60 fzfid φ x + 1 x 1 x Fin
61 elfznn i 1 x i
62 61 adantl φ x + 1 x i 1 x i
63 62 nnrecred φ x + 1 x i 1 x 1 i
64 60 63 fsumrecl φ x + 1 x i = 1 x 1 i
65 logsqrt x + log x = log x 2
66 65 ad2antrl φ x + 1 x log x = log x 2
67 rpsqrtcl x + x +
68 67 ad2antrl φ x + 1 x x +
69 harmoniclbnd x + log x i = 1 x 1 i
70 68 69 syl φ x + 1 x log x i = 1 x 1 i
71 66 70 eqbrtrrd φ x + 1 x log x 2 i = 1 x 1 i
72 eqid m 1 x m 2 = m 1 x m 2
73 ovex m 2 V
74 72 73 elrnmpti k ran m 1 x m 2 m 1 x k = m 2
75 elfznn m 1 x m
76 75 adantl φ x + 1 x m 1 x m
77 76 nnrpd φ x + 1 x m 1 x m +
78 77 rprege0d φ x + 1 x m 1 x m 0 m
79 sqrtsq m 0 m m 2 = m
80 78 79 syl φ x + 1 x m 1 x m 2 = m
81 80 76 eqeltrd φ x + 1 x m 1 x m 2
82 fveq2 k = m 2 k = m 2
83 82 eleq1d k = m 2 k m 2
84 81 83 syl5ibrcom φ x + 1 x m 1 x k = m 2 k
85 84 rexlimdva φ x + 1 x m 1 x k = m 2 k
86 74 85 syl5bi φ x + 1 x k ran m 1 x m 2 k
87 86 imp φ x + 1 x k ran m 1 x m 2 k
88 87 iftrued φ x + 1 x k ran m 1 x m 2 if k 1 0 = 1
89 88 oveq1d φ x + 1 x k ran m 1 x m 2 if k 1 0 k = 1 k
90 89 sumeq2dv φ x + 1 x k ran m 1 x m 2 if k 1 0 k = k ran m 1 x m 2 1 k
91 fveq2 k = i 2 k = i 2
92 91 oveq2d k = i 2 1 k = 1 i 2
93 76 nnsqcld φ x + 1 x m 1 x m 2
94 68 rpred φ x + 1 x x
95 fznnfl x m 1 x m m x
96 94 95 syl φ x + 1 x m 1 x m m x
97 96 simplbda φ x + 1 x m 1 x m x
98 68 adantr φ x + 1 x m 1 x x +
99 98 rprege0d φ x + 1 x m 1 x x 0 x
100 le2sq m 0 m x 0 x m x m 2 x 2
101 78 99 100 syl2anc φ x + 1 x m 1 x m x m 2 x 2
102 97 101 mpbid φ x + 1 x m 1 x m 2 x 2
103 35 rpred φ x + 1 x x
104 103 adantr φ x + 1 x m 1 x x
105 104 recnd φ x + 1 x m 1 x x
106 105 sqsqrtd φ x + 1 x m 1 x x 2 = x
107 102 106 breqtrd φ x + 1 x m 1 x m 2 x
108 fznnfl x m 2 1 x m 2 m 2 x
109 104 108 syl φ x + 1 x m 1 x m 2 1 x m 2 m 2 x
110 93 107 109 mpbir2and φ x + 1 x m 1 x m 2 1 x
111 110 ex φ x + 1 x m 1 x m 2 1 x
112 75 nnrpd m 1 x m +
113 112 rprege0d m 1 x m 0 m
114 61 nnrpd i 1 x i +
115 114 rprege0d i 1 x i 0 i
116 sq11 m 0 m i 0 i m 2 = i 2 m = i
117 113 115 116 syl2an m 1 x i 1 x m 2 = i 2 m = i
118 117 a1i φ x + 1 x m 1 x i 1 x m 2 = i 2 m = i
119 111 118 dom2lem φ x + 1 x m 1 x m 2 : 1 x 1-1 1 x
120 f1f1orn m 1 x m 2 : 1 x 1-1 1 x m 1 x m 2 : 1 x 1-1 onto ran m 1 x m 2
121 119 120 syl φ x + 1 x m 1 x m 2 : 1 x 1-1 onto ran m 1 x m 2
122 oveq1 m = i m 2 = i 2
123 122 72 73 fvmpt3i i 1 x m 1 x m 2 i = i 2
124 123 adantl φ x + 1 x i 1 x m 1 x m 2 i = i 2
125 f1f m 1 x m 2 : 1 x 1-1 1 x m 1 x m 2 : 1 x 1 x
126 frn m 1 x m 2 : 1 x 1 x ran m 1 x m 2 1 x
127 119 125 126 3syl φ x + 1 x ran m 1 x m 2 1 x
128 127 sselda φ x + 1 x k ran m 1 x m 2 k 1 x
129 1re 1
130 0re 0
131 129 130 ifcli if k 1 0
132 rerpdivcl if k 1 0 k + if k 1 0 k
133 131 55 132 sylancr φ x + 1 x k 1 x if k 1 0 k
134 133 recnd φ x + 1 x k 1 x if k 1 0 k
135 128 134 syldan φ x + 1 x k ran m 1 x m 2 if k 1 0 k
136 89 135 eqeltrrd φ x + 1 x k ran m 1 x m 2 1 k
137 92 60 121 124 136 fsumf1o φ x + 1 x k ran m 1 x m 2 1 k = i = 1 x 1 i 2
138 90 137 eqtrd φ x + 1 x k ran m 1 x m 2 if k 1 0 k = i = 1 x 1 i 2
139 eldif k 1 x ran m 1 x m 2 k 1 x ¬ k ran m 1 x m 2
140 50 ad2antrl φ x + 1 x k 1 x k k
141 140 nncnd φ x + 1 x k 1 x k k
142 141 sqsqrtd φ x + 1 x k 1 x k k 2 = k
143 simprr φ x + 1 x k 1 x k k
144 fznnfl x k 1 x k k x
145 103 144 syl φ x + 1 x k 1 x k k x
146 145 simplbda φ x + 1 x k 1 x k x
147 146 adantrr φ x + 1 x k 1 x k k x
148 140 nnrpd φ x + 1 x k 1 x k k +
149 148 rprege0d φ x + 1 x k 1 x k k 0 k
150 35 adantr φ x + 1 x k 1 x k x +
151 150 rprege0d φ x + 1 x k 1 x k x 0 x
152 sqrtle k 0 k x 0 x k x k x
153 149 151 152 syl2anc φ x + 1 x k 1 x k k x k x
154 147 153 mpbid φ x + 1 x k 1 x k k x
155 68 adantr φ x + 1 x k 1 x k x +
156 155 rpred φ x + 1 x k 1 x k x
157 fznnfl x k 1 x k k x
158 156 157 syl φ x + 1 x k 1 x k k 1 x k k x
159 143 154 158 mpbir2and φ x + 1 x k 1 x k k 1 x
160 142 140 eqeltrd φ x + 1 x k 1 x k k 2
161 oveq1 m = k m 2 = k 2
162 72 161 elrnmpt1s k 1 x k 2 k 2 ran m 1 x m 2
163 159 160 162 syl2anc φ x + 1 x k 1 x k k 2 ran m 1 x m 2
164 142 163 eqeltrrd φ x + 1 x k 1 x k k ran m 1 x m 2
165 164 expr φ x + 1 x k 1 x k k ran m 1 x m 2
166 165 con3d φ x + 1 x k 1 x ¬ k ran m 1 x m 2 ¬ k
167 166 impr φ x + 1 x k 1 x ¬ k ran m 1 x m 2 ¬ k
168 139 167 sylan2b φ x + 1 x k 1 x ran m 1 x m 2 ¬ k
169 168 iffalsed φ x + 1 x k 1 x ran m 1 x m 2 if k 1 0 = 0
170 169 oveq1d φ x + 1 x k 1 x ran m 1 x m 2 if k 1 0 k = 0 k
171 eldifi k 1 x ran m 1 x m 2 k 1 x
172 171 55 sylan2 φ x + 1 x k 1 x ran m 1 x m 2 k +
173 172 rpcnne0d φ x + 1 x k 1 x ran m 1 x m 2 k k 0
174 div0 k k 0 0 k = 0
175 173 174 syl φ x + 1 x k 1 x ran m 1 x m 2 0 k = 0
176 170 175 eqtrd φ x + 1 x k 1 x ran m 1 x m 2 if k 1 0 k = 0
177 127 135 176 47 fsumss φ x + 1 x k ran m 1 x m 2 if k 1 0 k = k = 1 x if k 1 0 k
178 62 nnrpd φ x + 1 x i 1 x i +
179 178 rprege0d φ x + 1 x i 1 x i 0 i
180 sqrtsq i 0 i i 2 = i
181 179 180 syl φ x + 1 x i 1 x i 2 = i
182 181 oveq2d φ x + 1 x i 1 x 1 i 2 = 1 i
183 182 sumeq2dv φ x + 1 x i = 1 x 1 i 2 = i = 1 x 1 i
184 138 177 183 3eqtr3d φ x + 1 x k = 1 x if k 1 0 k = i = 1 x 1 i
185 131 a1i φ x + 1 x k 1 x if k 1 0
186 3 ad2antrr φ x + 1 x k 1 x N
187 8 ad2antrr φ x + 1 x k 1 x X D
188 9 ad2antrr φ x + 1 x k 1 x X : Base Z
189 1 2 186 4 5 6 7 187 188 53 dchrisum0flb φ x + 1 x k 1 x if k 1 0 F k
190 185 52 55 189 lediv1dd φ x + 1 x k 1 x if k 1 0 k F k k
191 47 133 56 190 fsumle φ x + 1 x k = 1 x if k 1 0 k k = 1 x F k k
192 184 191 eqbrtrrd φ x + 1 x i = 1 x 1 i k = 1 x F k k
193 30 64 57 71 192 letrd φ x + 1 x log x 2 k = 1 x F k k
194 57 leabsd φ x + 1 x k = 1 x F k k k = 1 x F k k
195 30 57 59 193 194 letrd φ x + 1 x log x 2 k = 1 x F k k
196 46 195 eqbrtrd φ x + 1 x log x 2 k = 1 x F k k
197 27 10 29 21 196 o1le φ x + log x 2 𝑂1
198 15 21 26 197 o1mul2 φ x + 2 log x 2 𝑂1
199 19 198 eqeltrrd φ x + log x 𝑂1
200 11 199 mto ¬ φ