Metamath Proof Explorer


Theorem dchrisum0lem1

Description: Lemma for dchrisum0 . (Contributed by Mario Carneiro, 12-May-2016) (Revised by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
dchrisum0.b φ X W
dchrisum0lem1.f F = a X L a a
dchrisum0.c φ C 0 +∞
dchrisum0.s φ seq 1 + F S
dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
Assertion dchrisum0lem1 φ x + m = x + 1 x 2 d = 1 x 2 m X L m m d 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
8 dchrisum0.b φ X W
9 dchrisum0lem1.f F = a X L a a
10 dchrisum0.c φ C 0 +∞
11 dchrisum0.s φ seq 1 + F S
12 dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
13 fzfid φ x + 1 x Fin
14 fzfid φ x + x + 1 x 2 Fin
15 fzfid φ x + d 1 x x + 1 x 2 d Fin
16 elfznn d 1 x d
17 elfzuz m x + 1 x 2 d m x + 1
18 16 17 anim12i d 1 x m x + 1 x 2 d d m x + 1
19 18 a1i φ x + d 1 x m x + 1 x 2 d d m x + 1
20 elfzuz m x + 1 x 2 m x + 1
21 elfznn d 1 x 2 m d
22 20 21 anim12ci m x + 1 x 2 d 1 x 2 m d m x + 1
23 22 a1i φ x + m x + 1 x 2 d 1 x 2 m d m x + 1
24 eluzelz m x + 1 m
25 24 ad2antll φ x + d m x + 1 m
26 25 zred φ x + d m x + 1 m
27 simpr φ x + x +
28 2z 2
29 rpexpcl x + 2 x 2 +
30 27 28 29 sylancl φ x + x 2 +
31 30 rpred φ x + x 2
32 31 adantr φ x + d m x + 1 x 2
33 simprl φ x + d m x + 1 d
34 33 nnrpd φ x + d m x + 1 d +
35 26 32 34 lemuldivd φ x + d m x + 1 m d x 2 m x 2 d
36 33 nnred φ x + d m x + 1 d
37 27 rprege0d φ x + x 0 x
38 flge0nn0 x 0 x x 0
39 nn0p1nn x 0 x + 1
40 37 38 39 3syl φ x + x + 1
41 40 adantr φ x + d m x + 1 x + 1
42 simprr φ x + d m x + 1 m x + 1
43 eluznn x + 1 m x + 1 m
44 41 42 43 syl2anc φ x + d m x + 1 m
45 44 nnrpd φ x + d m x + 1 m +
46 36 32 45 lemuldiv2d φ x + d m x + 1 m d x 2 d x 2 m
47 35 46 bitr3d φ x + d m x + 1 m x 2 d d x 2 m
48 rpcn x + x
49 48 adantl φ x + x
50 49 sqvald φ x + x 2 = x x
51 50 adantr φ x + d m x + 1 x 2 = x x
52 simplr φ x + d m x + 1 x +
53 52 rpred φ x + d m x + 1 x
54 reflcl x x
55 peano2re x x + 1
56 53 54 55 3syl φ x + d m x + 1 x + 1
57 fllep1 x x x + 1
58 53 57 syl φ x + d m x + 1 x x + 1
59 eluzle m x + 1 x + 1 m
60 59 ad2antll φ x + d m x + 1 x + 1 m
61 53 56 26 58 60 letrd φ x + d m x + 1 x m
62 53 26 52 lemul1d φ x + d m x + 1 x m x x m x
63 61 62 mpbid φ x + d m x + 1 x x m x
64 51 63 eqbrtrd φ x + d m x + 1 x 2 m x
65 32 53 45 ledivmuld φ x + d m x + 1 x 2 m x x 2 m x
66 64 65 mpbird φ x + d m x + 1 x 2 m x
67 nnre d d
68 67 ad2antrl φ x + d m x + 1 d
69 32 44 nndivred φ x + d m x + 1 x 2 m
70 letr d x 2 m x d x 2 m x 2 m x d x
71 68 69 53 70 syl3anc φ x + d m x + 1 d x 2 m x 2 m x d x
72 66 71 mpan2d φ x + d m x + 1 d x 2 m d x
73 47 72 sylbid φ x + d m x + 1 m x 2 d d x
74 73 pm4.71rd φ x + d m x + 1 m x 2 d d x m x 2 d
75 nnge1 d 1 d
76 75 ad2antrl φ x + d m x + 1 1 d
77 1re 1
78 0lt1 0 < 1
79 77 78 pm3.2i 1 0 < 1
80 34 rpregt0d φ x + d m x + 1 d 0 < d
81 30 adantr φ x + d m x + 1 x 2 +
82 81 rpregt0d φ x + d m x + 1 x 2 0 < x 2
83 lediv2 1 0 < 1 d 0 < d x 2 0 < x 2 1 d x 2 d x 2 1
84 79 80 82 83 mp3an2i φ x + d m x + 1 1 d x 2 d x 2 1
85 76 84 mpbid φ x + d m x + 1 x 2 d x 2 1
86 32 recnd φ x + d m x + 1 x 2
87 86 div1d φ x + d m x + 1 x 2 1 = x 2
88 85 87 breqtrd φ x + d m x + 1 x 2 d x 2
89 simpl d m x + 1 d
90 nndivre x 2 d x 2 d
91 31 89 90 syl2an φ x + d m x + 1 x 2 d
92 letr m x 2 d x 2 m x 2 d x 2 d x 2 m x 2
93 26 91 32 92 syl3anc φ x + d m x + 1 m x 2 d x 2 d x 2 m x 2
94 88 93 mpan2d φ x + d m x + 1 m x 2 d m x 2
95 47 94 sylbird φ x + d m x + 1 d x 2 m m x 2
96 95 pm4.71rd φ x + d m x + 1 d x 2 m m x 2 d x 2 m
97 47 74 96 3bitr3d φ x + d m x + 1 d x m x 2 d m x 2 d x 2 m
98 fznnfl x d 1 x d d x
99 98 baibd x d d 1 x d x
100 53 33 99 syl2anc φ x + d m x + 1 d 1 x d x
101 91 flcld φ x + d m x + 1 x 2 d
102 elfz5 m x + 1 x 2 d m x + 1 x 2 d m x 2 d
103 42 101 102 syl2anc φ x + d m x + 1 m x + 1 x 2 d m x 2 d
104 flge x 2 d m m x 2 d m x 2 d
105 91 25 104 syl2anc φ x + d m x + 1 m x 2 d m x 2 d
106 103 105 bitr4d φ x + d m x + 1 m x + 1 x 2 d m x 2 d
107 100 106 anbi12d φ x + d m x + 1 d 1 x m x + 1 x 2 d d x m x 2 d
108 32 flcld φ x + d m x + 1 x 2
109 elfz5 m x + 1 x 2 m x + 1 x 2 m x 2
110 42 108 109 syl2anc φ x + d m x + 1 m x + 1 x 2 m x 2
111 flge x 2 m m x 2 m x 2
112 32 25 111 syl2anc φ x + d m x + 1 m x 2 m x 2
113 110 112 bitr4d φ x + d m x + 1 m x + 1 x 2 m x 2
114 fznnfl x 2 m d 1 x 2 m d d x 2 m
115 114 baibd x 2 m d d 1 x 2 m d x 2 m
116 69 33 115 syl2anc φ x + d m x + 1 d 1 x 2 m d x 2 m
117 113 116 anbi12d φ x + d m x + 1 m x + 1 x 2 d 1 x 2 m m x 2 d x 2 m
118 97 107 117 3bitr4d φ x + d m x + 1 d 1 x m x + 1 x 2 d m x + 1 x 2 d 1 x 2 m
119 118 ex φ x + d m x + 1 d 1 x m x + 1 x 2 d m x + 1 x 2 d 1 x 2 m
120 19 23 119 pm5.21ndd φ x + d 1 x m x + 1 x 2 d m x + 1 x 2 d 1 x 2 m
121 ssun2 x + 1 x 2 d 1 x x + 1 x 2 d
122 40 adantr φ x + d 1 x x + 1
123 nnuz = 1
124 122 123 eleqtrdi φ x + d 1 x x + 1 1
125 dchrisum0lem1a φ x + d 1 x x x 2 d x 2 d x
126 125 simprd φ x + d 1 x x 2 d x
127 fzsplit2 x + 1 1 x 2 d x 1 x 2 d = 1 x x + 1 x 2 d
128 124 126 127 syl2anc φ x + d 1 x 1 x 2 d = 1 x x + 1 x 2 d
129 121 128 sseqtrrid φ x + d 1 x x + 1 x 2 d 1 x 2 d
130 129 sselda φ x + d 1 x m x + 1 x 2 d m 1 x 2 d
131 7 ssrab3 W D 1 ˙
132 131 8 sselid φ X D 1 ˙
133 132 eldifad φ X D
134 133 ad3antrrr φ x + d 1 x m 1 x 2 d X D
135 elfzelz m 1 x 2 d m
136 135 adantl φ x + d 1 x m 1 x 2 d m
137 4 1 5 2 134 136 dchrzrhcl φ x + d 1 x m 1 x 2 d X L m
138 elfznn m 1 x 2 d m
139 138 adantl φ x + d 1 x m 1 x 2 d m
140 139 nnrpd φ x + d 1 x m 1 x 2 d m +
141 140 rpsqrtcld φ x + d 1 x m 1 x 2 d m +
142 141 rpcnd φ x + d 1 x m 1 x 2 d m
143 141 rpne0d φ x + d 1 x m 1 x 2 d m 0
144 137 142 143 divcld φ x + d 1 x m 1 x 2 d X L m m
145 16 adantl φ x + d 1 x d
146 145 nnrpd φ x + d 1 x d +
147 146 rpsqrtcld φ x + d 1 x d +
148 147 rpcnne0d φ x + d 1 x d d 0
149 148 adantr φ x + d 1 x m 1 x 2 d d d 0
150 149 simpld φ x + d 1 x m 1 x 2 d d
151 149 simprd φ x + d 1 x m 1 x 2 d d 0
152 144 150 151 divcld φ x + d 1 x m 1 x 2 d X L m m d
153 130 152 syldan φ x + d 1 x m x + 1 x 2 d X L m m d
154 153 anasss φ x + d 1 x m x + 1 x 2 d X L m m d
155 13 14 15 120 154 fsumcom2 φ x + d = 1 x m = x + 1 x 2 d X L m m d = m = x + 1 x 2 d = 1 x 2 m X L m m d
156 155 mpteq2dva φ x + d = 1 x m = x + 1 x 2 d X L m m d = x + m = x + 1 x 2 d = 1 x 2 m X L m m d
157 77 a1i φ 1
158 2cn 2
159 27 rpsqrtcld φ x + x +
160 159 rpcnd φ x + x
161 mulcl 2 x 2 x
162 158 160 161 sylancr φ x + 2 x
163 147 rprecred φ x + d 1 x 1 d
164 13 163 fsumrecl φ x + d = 1 x 1 d
165 164 recnd φ x + d = 1 x 1 d
166 165 162 subcld φ x + d = 1 x 1 d 2 x
167 2re 2
168 elrege0 C 0 +∞ C 0 C
169 10 168 sylib φ C 0 C
170 169 simpld φ C
171 remulcl 2 C 2 C
172 167 170 171 sylancr φ 2 C
173 172 adantr φ x + 2 C
174 173 159 rerpdivcld φ x + 2 C x
175 174 recnd φ x + 2 C x
176 162 166 175 adddird φ x + 2 x + d = 1 x 1 d - 2 x 2 C x = 2 x 2 C x + d = 1 x 1 d 2 x 2 C x
177 162 165 pncan3d φ x + 2 x + d = 1 x 1 d - 2 x = d = 1 x 1 d
178 177 oveq1d φ x + 2 x + d = 1 x 1 d - 2 x 2 C x = d = 1 x 1 d 2 C x
179 2cnd φ x + 2
180 179 160 175 mulassd φ x + 2 x 2 C x = 2 x 2 C x
181 173 recnd φ x + 2 C
182 159 rpne0d φ x + x 0
183 181 160 182 divcan2d φ x + x 2 C x = 2 C
184 183 oveq2d φ x + 2 x 2 C x = 2 2 C
185 180 184 eqtrd φ x + 2 x 2 C x = 2 2 C
186 185 oveq1d φ x + 2 x 2 C x + d = 1 x 1 d 2 x 2 C x = 2 2 C + d = 1 x 1 d 2 x 2 C x
187 176 178 186 3eqtr3d φ x + d = 1 x 1 d 2 C x = 2 2 C + d = 1 x 1 d 2 x 2 C x
188 187 mpteq2dva φ x + d = 1 x 1 d 2 C x = x + 2 2 C + d = 1 x 1 d 2 x 2 C x
189 remulcl 2 2 C 2 2 C
190 167 172 189 sylancr φ 2 2 C
191 190 recnd φ 2 2 C
192 191 adantr φ x + 2 2 C
193 166 175 mulcld φ x + d = 1 x 1 d 2 x 2 C x
194 rpssre +
195 o1const + 2 2 C x + 2 2 C 𝑂1
196 194 191 195 sylancr φ x + 2 2 C 𝑂1
197 eqid x + d = 1 x 1 d 2 x = x + d = 1 x 1 d 2 x
198 197 divsqrsum x + d = 1 x 1 d 2 x dom
199 rlimdmo1 x + d = 1 x 1 d 2 x dom x + d = 1 x 1 d 2 x 𝑂1
200 198 199 mp1i φ x + d = 1 x 1 d 2 x 𝑂1
201 181 160 182 divrecd φ x + 2 C x = 2 C 1 x
202 201 mpteq2dva φ x + 2 C x = x + 2 C 1 x
203 159 rprecred φ x + 1 x
204 172 recnd φ 2 C
205 rlimconst + 2 C x + 2 C 2 C
206 194 204 205 sylancr φ x + 2 C 2 C
207 sqrtlim x + 1 x 0
208 207 a1i φ x + 1 x 0
209 173 203 206 208 rlimmul φ x + 2 C 1 x 2 C 0
210 202 209 eqbrtrd φ x + 2 C x 2 C 0
211 rlimo1 x + 2 C x 2 C 0 x + 2 C x 𝑂1
212 210 211 syl φ x + 2 C x 𝑂1
213 166 175 200 212 o1mul2 φ x + d = 1 x 1 d 2 x 2 C x 𝑂1
214 192 193 196 213 o1add2 φ x + 2 2 C + d = 1 x 1 d 2 x 2 C x 𝑂1
215 188 214 eqeltrd φ x + d = 1 x 1 d 2 C x 𝑂1
216 164 174 remulcld φ x + d = 1 x 1 d 2 C x
217 15 153 fsumcl φ x + d 1 x m = x + 1 x 2 d X L m m d
218 13 217 fsumcl φ x + d = 1 x m = x + 1 x 2 d X L m m d
219 218 abscld φ x + d = 1 x m = x + 1 x 2 d X L m m d
220 216 recnd φ x + d = 1 x 1 d 2 C x
221 220 abscld φ x + d = 1 x 1 d 2 C x
222 217 abscld φ x + d 1 x m = x + 1 x 2 d X L m m d
223 13 222 fsumrecl φ x + d = 1 x m = x + 1 x 2 d X L m m d
224 13 217 fsumabs φ x + d = 1 x m = x + 1 x 2 d X L m m d d = 1 x m = x + 1 x 2 d X L m m d
225 174 adantr φ x + d 1 x 2 C x
226 163 225 remulcld φ x + d 1 x 1 d 2 C x
227 130 144 syldan φ x + d 1 x m x + 1 x 2 d X L m m
228 15 227 fsumcl φ x + d 1 x m = x + 1 x 2 d X L m m
229 228 abscld φ x + d 1 x m = x + 1 x 2 d X L m m
230 1 2 3 4 5 6 7 8 9 10 11 12 dchrisum0lem1b φ x + d 1 x m = x + 1 x 2 d X L m m 2 C x
231 229 225 147 230 lediv1dd φ x + d 1 x m = x + 1 x 2 d X L m m d 2 C x d
232 147 rpcnd φ x + d 1 x d
233 147 rpne0d φ x + d 1 x d 0
234 228 232 233 absdivd φ x + d 1 x m = x + 1 x 2 d X L m m d = m = x + 1 x 2 d X L m m d
235 15 232 227 233 fsumdivc φ x + d 1 x m = x + 1 x 2 d X L m m d = m = x + 1 x 2 d X L m m d
236 235 fveq2d φ x + d 1 x m = x + 1 x 2 d X L m m d = m = x + 1 x 2 d X L m m d
237 147 rprege0d φ x + d 1 x d 0 d
238 absid d 0 d d = d
239 237 238 syl φ x + d 1 x d = d
240 239 oveq2d φ x + d 1 x m = x + 1 x 2 d X L m m d = m = x + 1 x 2 d X L m m d
241 234 236 240 3eqtr3rd φ x + d 1 x m = x + 1 x 2 d X L m m d = m = x + 1 x 2 d X L m m d
242 175 adantr φ x + d 1 x 2 C x
243 242 232 233 divrec2d φ x + d 1 x 2 C x d = 1 d 2 C x
244 231 241 243 3brtr3d φ x + d 1 x m = x + 1 x 2 d X L m m d 1 d 2 C x
245 13 222 226 244 fsumle φ x + d = 1 x m = x + 1 x 2 d X L m m d d = 1 x 1 d 2 C x
246 163 recnd φ x + d 1 x 1 d
247 13 175 246 fsummulc1 φ x + d = 1 x 1 d 2 C x = d = 1 x 1 d 2 C x
248 245 247 breqtrrd φ x + d = 1 x m = x + 1 x 2 d X L m m d d = 1 x 1 d 2 C x
249 219 223 216 224 248 letrd φ x + d = 1 x m = x + 1 x 2 d X L m m d d = 1 x 1 d 2 C x
250 216 leabsd φ x + d = 1 x 1 d 2 C x d = 1 x 1 d 2 C x
251 219 216 221 249 250 letrd φ x + d = 1 x m = x + 1 x 2 d X L m m d d = 1 x 1 d 2 C x
252 251 adantrr φ x + 1 x d = 1 x m = x + 1 x 2 d X L m m d d = 1 x 1 d 2 C x
253 157 215 216 218 252 o1le φ x + d = 1 x m = x + 1 x 2 d X L m m d 𝑂1
254 156 253 eqeltrrd φ x + m = x + 1 x 2 d = 1 x 2 m X L m m d 𝑂1