Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum2.g |
|
5 |
|
rpvmasum2.d |
|
6 |
|
rpvmasum2.1 |
|
7 |
|
rpvmasum2.w |
|
8 |
|
dchrisum0.b |
|
9 |
|
dchrisum0lem1.f |
|
10 |
|
dchrisum0.c |
|
11 |
|
dchrisum0.s |
|
12 |
|
dchrisum0.1 |
|
13 |
|
fzfid |
|
14 |
|
fzfid |
|
15 |
|
fzfid |
|
16 |
|
elfznn |
|
17 |
|
elfzuz |
|
18 |
16 17
|
anim12i |
|
19 |
18
|
a1i |
|
20 |
|
elfzuz |
|
21 |
|
elfznn |
|
22 |
20 21
|
anim12ci |
|
23 |
22
|
a1i |
|
24 |
|
eluzelz |
|
25 |
24
|
ad2antll |
|
26 |
25
|
zred |
|
27 |
|
simpr |
|
28 |
|
2z |
|
29 |
|
rpexpcl |
|
30 |
27 28 29
|
sylancl |
|
31 |
30
|
rpred |
|
32 |
31
|
adantr |
|
33 |
|
simprl |
|
34 |
33
|
nnrpd |
|
35 |
26 32 34
|
lemuldivd |
|
36 |
33
|
nnred |
|
37 |
27
|
rprege0d |
|
38 |
|
flge0nn0 |
|
39 |
|
nn0p1nn |
|
40 |
37 38 39
|
3syl |
|
41 |
40
|
adantr |
|
42 |
|
simprr |
|
43 |
|
eluznn |
|
44 |
41 42 43
|
syl2anc |
|
45 |
44
|
nnrpd |
|
46 |
36 32 45
|
lemuldiv2d |
|
47 |
35 46
|
bitr3d |
|
48 |
|
rpcn |
|
49 |
48
|
adantl |
|
50 |
49
|
sqvald |
|
51 |
50
|
adantr |
|
52 |
|
simplr |
|
53 |
52
|
rpred |
|
54 |
|
reflcl |
|
55 |
|
peano2re |
|
56 |
53 54 55
|
3syl |
|
57 |
|
fllep1 |
|
58 |
53 57
|
syl |
|
59 |
|
eluzle |
|
60 |
59
|
ad2antll |
|
61 |
53 56 26 58 60
|
letrd |
|
62 |
53 26 52
|
lemul1d |
|
63 |
61 62
|
mpbid |
|
64 |
51 63
|
eqbrtrd |
|
65 |
32 53 45
|
ledivmuld |
|
66 |
64 65
|
mpbird |
|
67 |
|
nnre |
|
68 |
67
|
ad2antrl |
|
69 |
32 44
|
nndivred |
|
70 |
|
letr |
|
71 |
68 69 53 70
|
syl3anc |
|
72 |
66 71
|
mpan2d |
|
73 |
47 72
|
sylbid |
|
74 |
73
|
pm4.71rd |
|
75 |
|
nnge1 |
|
76 |
75
|
ad2antrl |
|
77 |
|
1re |
|
78 |
|
0lt1 |
|
79 |
77 78
|
pm3.2i |
|
80 |
34
|
rpregt0d |
|
81 |
30
|
adantr |
|
82 |
81
|
rpregt0d |
|
83 |
|
lediv2 |
|
84 |
79 80 82 83
|
mp3an2i |
|
85 |
76 84
|
mpbid |
|
86 |
32
|
recnd |
|
87 |
86
|
div1d |
|
88 |
85 87
|
breqtrd |
|
89 |
|
simpl |
|
90 |
|
nndivre |
|
91 |
31 89 90
|
syl2an |
|
92 |
|
letr |
|
93 |
26 91 32 92
|
syl3anc |
|
94 |
88 93
|
mpan2d |
|
95 |
47 94
|
sylbird |
|
96 |
95
|
pm4.71rd |
|
97 |
47 74 96
|
3bitr3d |
|
98 |
|
fznnfl |
|
99 |
98
|
baibd |
|
100 |
53 33 99
|
syl2anc |
|
101 |
91
|
flcld |
|
102 |
|
elfz5 |
|
103 |
42 101 102
|
syl2anc |
|
104 |
|
flge |
|
105 |
91 25 104
|
syl2anc |
|
106 |
103 105
|
bitr4d |
|
107 |
100 106
|
anbi12d |
|
108 |
32
|
flcld |
|
109 |
|
elfz5 |
|
110 |
42 108 109
|
syl2anc |
|
111 |
|
flge |
|
112 |
32 25 111
|
syl2anc |
|
113 |
110 112
|
bitr4d |
|
114 |
|
fznnfl |
|
115 |
114
|
baibd |
|
116 |
69 33 115
|
syl2anc |
|
117 |
113 116
|
anbi12d |
|
118 |
97 107 117
|
3bitr4d |
|
119 |
118
|
ex |
|
120 |
19 23 119
|
pm5.21ndd |
|
121 |
|
ssun2 |
|
122 |
40
|
adantr |
|
123 |
|
nnuz |
|
124 |
122 123
|
eleqtrdi |
|
125 |
|
dchrisum0lem1a |
|
126 |
125
|
simprd |
|
127 |
|
fzsplit2 |
|
128 |
124 126 127
|
syl2anc |
|
129 |
121 128
|
sseqtrrid |
|
130 |
129
|
sselda |
|
131 |
7
|
ssrab3 |
|
132 |
131 8
|
sselid |
|
133 |
132
|
eldifad |
|
134 |
133
|
ad3antrrr |
|
135 |
|
elfzelz |
|
136 |
135
|
adantl |
|
137 |
4 1 5 2 134 136
|
dchrzrhcl |
|
138 |
|
elfznn |
|
139 |
138
|
adantl |
|
140 |
139
|
nnrpd |
|
141 |
140
|
rpsqrtcld |
|
142 |
141
|
rpcnd |
|
143 |
141
|
rpne0d |
|
144 |
137 142 143
|
divcld |
|
145 |
16
|
adantl |
|
146 |
145
|
nnrpd |
|
147 |
146
|
rpsqrtcld |
|
148 |
147
|
rpcnne0d |
|
149 |
148
|
adantr |
|
150 |
149
|
simpld |
|
151 |
149
|
simprd |
|
152 |
144 150 151
|
divcld |
|
153 |
130 152
|
syldan |
|
154 |
153
|
anasss |
|
155 |
13 14 15 120 154
|
fsumcom2 |
|
156 |
155
|
mpteq2dva |
|
157 |
77
|
a1i |
|
158 |
|
2cn |
|
159 |
27
|
rpsqrtcld |
|
160 |
159
|
rpcnd |
|
161 |
|
mulcl |
|
162 |
158 160 161
|
sylancr |
|
163 |
147
|
rprecred |
|
164 |
13 163
|
fsumrecl |
|
165 |
164
|
recnd |
|
166 |
165 162
|
subcld |
|
167 |
|
2re |
|
168 |
|
elrege0 |
|
169 |
10 168
|
sylib |
|
170 |
169
|
simpld |
|
171 |
|
remulcl |
|
172 |
167 170 171
|
sylancr |
|
173 |
172
|
adantr |
|
174 |
173 159
|
rerpdivcld |
|
175 |
174
|
recnd |
|
176 |
162 166 175
|
adddird |
|
177 |
162 165
|
pncan3d |
|
178 |
177
|
oveq1d |
|
179 |
|
2cnd |
|
180 |
179 160 175
|
mulassd |
|
181 |
173
|
recnd |
|
182 |
159
|
rpne0d |
|
183 |
181 160 182
|
divcan2d |
|
184 |
183
|
oveq2d |
|
185 |
180 184
|
eqtrd |
|
186 |
185
|
oveq1d |
|
187 |
176 178 186
|
3eqtr3d |
|
188 |
187
|
mpteq2dva |
|
189 |
|
remulcl |
|
190 |
167 172 189
|
sylancr |
|
191 |
190
|
recnd |
|
192 |
191
|
adantr |
|
193 |
166 175
|
mulcld |
|
194 |
|
rpssre |
|
195 |
|
o1const |
|
196 |
194 191 195
|
sylancr |
|
197 |
|
eqid |
|
198 |
197
|
divsqrsum |
|
199 |
|
rlimdmo1 |
|
200 |
198 199
|
mp1i |
|
201 |
181 160 182
|
divrecd |
|
202 |
201
|
mpteq2dva |
|
203 |
159
|
rprecred |
|
204 |
172
|
recnd |
|
205 |
|
rlimconst |
|
206 |
194 204 205
|
sylancr |
|
207 |
|
sqrtlim |
|
208 |
207
|
a1i |
|
209 |
173 203 206 208
|
rlimmul |
|
210 |
202 209
|
eqbrtrd |
|
211 |
|
rlimo1 |
|
212 |
210 211
|
syl |
|
213 |
166 175 200 212
|
o1mul2 |
|
214 |
192 193 196 213
|
o1add2 |
|
215 |
188 214
|
eqeltrd |
|
216 |
164 174
|
remulcld |
|
217 |
15 153
|
fsumcl |
|
218 |
13 217
|
fsumcl |
|
219 |
218
|
abscld |
|
220 |
216
|
recnd |
|
221 |
220
|
abscld |
|
222 |
217
|
abscld |
|
223 |
13 222
|
fsumrecl |
|
224 |
13 217
|
fsumabs |
|
225 |
174
|
adantr |
|
226 |
163 225
|
remulcld |
|
227 |
130 144
|
syldan |
|
228 |
15 227
|
fsumcl |
|
229 |
228
|
abscld |
|
230 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisum0lem1b |
|
231 |
229 225 147 230
|
lediv1dd |
|
232 |
147
|
rpcnd |
|
233 |
147
|
rpne0d |
|
234 |
228 232 233
|
absdivd |
|
235 |
15 232 227 233
|
fsumdivc |
|
236 |
235
|
fveq2d |
|
237 |
147
|
rprege0d |
|
238 |
|
absid |
|
239 |
237 238
|
syl |
|
240 |
239
|
oveq2d |
|
241 |
234 236 240
|
3eqtr3rd |
|
242 |
175
|
adantr |
|
243 |
242 232 233
|
divrec2d |
|
244 |
231 241 243
|
3brtr3d |
|
245 |
13 222 226 244
|
fsumle |
|
246 |
163
|
recnd |
|
247 |
13 175 246
|
fsummulc1 |
|
248 |
245 247
|
breqtrrd |
|
249 |
219 223 216 224 248
|
letrd |
|
250 |
216
|
leabsd |
|
251 |
219 216 221 249 250
|
letrd |
|
252 |
251
|
adantrr |
|
253 |
157 215 216 218 252
|
o1le |
|
254 |
156 253
|
eqeltrrd |
|