Metamath Proof Explorer


Theorem dchrisum0lem1a

Description: Lemma for dchrisum0lem1 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Assertion dchrisum0lem1a φ X + D 1 X X X 2 D X 2 D X

Proof

Step Hyp Ref Expression
1 elfznn D 1 X D
2 1 adantl φ X + D 1 X D
3 2 nnred φ X + D 1 X D
4 simpr φ X + X +
5 4 rpregt0d φ X + X 0 < X
6 5 adantr φ X + D 1 X X 0 < X
7 6 simpld φ X + D 1 X X
8 4 adantr φ X + D 1 X X +
9 8 rpge0d φ X + D 1 X 0 X
10 4 rpred φ X + X
11 fznnfl X D 1 X D D X
12 10 11 syl φ X + D 1 X D D X
13 12 simplbda φ X + D 1 X D X
14 3 7 7 9 13 lemul2ad φ X + D 1 X X D X X
15 rpcn X + X
16 15 adantl φ X + X
17 16 sqvald φ X + X 2 = X X
18 17 adantr φ X + D 1 X X 2 = X X
19 14 18 breqtrrd φ X + D 1 X X D X 2
20 2z 2
21 rpexpcl X + 2 X 2 +
22 4 20 21 sylancl φ X + X 2 +
23 22 rpred φ X + X 2
24 23 adantr φ X + D 1 X X 2
25 2 nnrpd φ X + D 1 X D +
26 7 24 25 lemuldivd φ X + D 1 X X D X 2 X X 2 D
27 19 26 mpbid φ X + D 1 X X X 2 D
28 nndivre X 2 D X 2 D
29 23 1 28 syl2an φ X + D 1 X X 2 D
30 flword2 X X 2 D X X 2 D X 2 D X
31 7 29 27 30 syl3anc φ X + D 1 X X 2 D X
32 27 31 jca φ X + D 1 X X X 2 D X 2 D X