Metamath Proof Explorer


Theorem dchrisum0lem2a

Description: Lemma for dchrisum0 . (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
dchrisum0.b φ X W
dchrisum0lem1.f F = a X L a a
dchrisum0.c φ C 0 +∞
dchrisum0.s φ seq 1 + F S
dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
dchrisum0lem2.h H = y + d = 1 y 1 d 2 y
dchrisum0lem2.u φ H U
Assertion dchrisum0lem2a φ x + m = 1 x X L m m H x 2 m 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
8 dchrisum0.b φ X W
9 dchrisum0lem1.f F = a X L a a
10 dchrisum0.c φ C 0 +∞
11 dchrisum0.s φ seq 1 + F S
12 dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
13 dchrisum0lem2.h H = y + d = 1 y 1 d 2 y
14 dchrisum0lem2.u φ H U
15 fzfid φ x + 1 x Fin
16 simpl φ x + φ
17 elfznn m 1 x m
18 7 ssrab3 W D 1 ˙
19 18 8 sseldi φ X D 1 ˙
20 19 eldifad φ X D
21 20 adantr φ m X D
22 nnz m m
23 22 adantl φ m m
24 4 1 5 2 21 23 dchrzrhcl φ m X L m
25 nnrp m m +
26 25 adantl φ m m +
27 26 rpsqrtcld φ m m +
28 27 rpcnd φ m m
29 27 rpne0d φ m m 0
30 24 28 29 divcld φ m X L m m
31 16 17 30 syl2an φ x + m 1 x X L m m
32 15 31 fsumcl φ x + m = 1 x X L m m
33 rlimcl H U U
34 14 33 syl φ U
35 34 adantr φ x + U
36 0xr 0 *
37 0lt1 0 < 1
38 df-ioo . = x * , y * z * | x < z z < y
39 df-ico . = x * , y * z * | x z z < y
40 xrltletr 0 * 1 * w * 0 < 1 1 w 0 < w
41 38 39 40 ixxss1 0 * 0 < 1 1 +∞ 0 +∞
42 36 37 41 mp2an 1 +∞ 0 +∞
43 ioorp 0 +∞ = +
44 42 43 sseqtri 1 +∞ +
45 resmpt 1 +∞ + x + m = 1 x X L m m 1 +∞ = x 1 +∞ m = 1 x X L m m
46 44 45 ax-mp x + m = 1 x X L m m 1 +∞ = x 1 +∞ m = 1 x X L m m
47 44 sseli x 1 +∞ x +
48 17 adantl φ x + m 1 x m
49 2fveq3 a = m X L a = X L m
50 fveq2 a = m a = m
51 49 50 oveq12d a = m X L a a = X L m m
52 ovex X L a a V
53 51 9 52 fvmpt3i m F m = X L m m
54 48 53 syl φ x + m 1 x F m = X L m m
55 47 54 sylanl2 φ x 1 +∞ m 1 x F m = X L m m
56 1re 1
57 elicopnf 1 x 1 +∞ x 1 x
58 56 57 ax-mp x 1 +∞ x 1 x
59 flge1nn x 1 x x
60 58 59 sylbi x 1 +∞ x
61 60 adantl φ x 1 +∞ x
62 nnuz = 1
63 61 62 eleqtrdi φ x 1 +∞ x 1
64 47 31 sylanl2 φ x 1 +∞ m 1 x X L m m
65 55 63 64 fsumser φ x 1 +∞ m = 1 x X L m m = seq 1 + F x
66 65 mpteq2dva φ x 1 +∞ m = 1 x X L m m = x 1 +∞ seq 1 + F x
67 46 66 syl5eq φ x + m = 1 x X L m m 1 +∞ = x 1 +∞ seq 1 + F x
68 fveq2 m = x seq 1 + F m = seq 1 + F x
69 rpssre +
70 69 a1i φ +
71 44 70 sstrid φ 1 +∞
72 1zzd φ 1
73 51 cbvmptv a X L a a = m X L m m
74 9 73 eqtri F = m X L m m
75 30 74 fmptd φ F :
76 75 ffvelrnda φ m F m
77 62 72 76 serf φ seq 1 + F :
78 77 feqmptd φ seq 1 + F = m seq 1 + F m
79 78 11 eqbrtrrd φ m seq 1 + F m S
80 77 ffvelrnda φ m seq 1 + F m
81 58 simprbi x 1 +∞ 1 x
82 81 adantl φ x 1 +∞ 1 x
83 62 68 71 72 79 80 82 climrlim2 φ x 1 +∞ seq 1 + F x S
84 rlimo1 x 1 +∞ seq 1 + F x S x 1 +∞ seq 1 + F x 𝑂1
85 83 84 syl φ x 1 +∞ seq 1 + F x 𝑂1
86 67 85 eqeltrd φ x + m = 1 x X L m m 1 +∞ 𝑂1
87 32 fmpttd φ x + m = 1 x X L m m : +
88 1red φ 1
89 87 70 88 o1resb φ x + m = 1 x X L m m 𝑂1 x + m = 1 x X L m m 1 +∞ 𝑂1
90 86 89 mpbird φ x + m = 1 x X L m m 𝑂1
91 o1const + U x + U 𝑂1
92 69 34 91 sylancr φ x + U 𝑂1
93 32 35 90 92 o1mul2 φ x + m = 1 x X L m m U 𝑂1
94 simpr φ x + x +
95 2z 2
96 rpexpcl x + 2 x 2 +
97 94 95 96 sylancl φ x + x 2 +
98 17 nnrpd m 1 x m +
99 rpdivcl x 2 + m + x 2 m +
100 97 98 99 syl2an φ x + m 1 x x 2 m +
101 13 divsqrsumf H : +
102 101 ffvelrni x 2 m + H x 2 m
103 100 102 syl φ x + m 1 x H x 2 m
104 103 recnd φ x + m 1 x H x 2 m
105 31 104 mulcld φ x + m 1 x X L m m H x 2 m
106 15 105 fsumcl φ x + m = 1 x X L m m H x 2 m
107 32 35 mulcld φ x + m = 1 x X L m m U
108 14 ad2antrr φ x + m 1 x H U
109 108 33 syl φ x + m 1 x U
110 31 109 mulcld φ x + m 1 x X L m m U
111 15 105 110 fsumsub φ x + m = 1 x X L m m H x 2 m X L m m U = m = 1 x X L m m H x 2 m m = 1 x X L m m U
112 31 104 109 subdid φ x + m 1 x X L m m H x 2 m U = X L m m H x 2 m X L m m U
113 112 sumeq2dv φ x + m = 1 x X L m m H x 2 m U = m = 1 x X L m m H x 2 m X L m m U
114 15 35 31 fsummulc1 φ x + m = 1 x X L m m U = m = 1 x X L m m U
115 114 oveq2d φ x + m = 1 x X L m m H x 2 m m = 1 x X L m m U = m = 1 x X L m m H x 2 m m = 1 x X L m m U
116 111 113 115 3eqtr4d φ x + m = 1 x X L m m H x 2 m U = m = 1 x X L m m H x 2 m m = 1 x X L m m U
117 116 mpteq2dva φ x + m = 1 x X L m m H x 2 m U = x + m = 1 x X L m m H x 2 m m = 1 x X L m m U
118 104 109 subcld φ x + m 1 x H x 2 m U
119 31 118 mulcld φ x + m 1 x X L m m H x 2 m U
120 15 119 fsumcl φ x + m = 1 x X L m m H x 2 m U
121 120 abscld φ x + m = 1 x X L m m H x 2 m U
122 119 abscld φ x + m 1 x X L m m H x 2 m U
123 15 122 fsumrecl φ x + m = 1 x X L m m H x 2 m U
124 1red φ x + 1
125 15 119 fsumabs φ x + m = 1 x X L m m H x 2 m U m = 1 x X L m m H x 2 m U
126 rprege0 x + x 0 x
127 126 adantl φ x + x 0 x
128 127 simpld φ x + x
129 reflcl x x
130 128 129 syl φ x + x
131 130 94 rerpdivcld φ x + x x
132 simplr φ x + m 1 x x +
133 132 rprecred φ x + m 1 x 1 x
134 31 abscld φ x + m 1 x X L m m
135 98 rpsqrtcld m 1 x m +
136 135 adantl φ x + m 1 x m +
137 136 rprecred φ x + m 1 x 1 m
138 118 abscld φ x + m 1 x H x 2 m U
139 136 132 rpdivcld φ x + m 1 x m x +
140 69 139 sseldi φ x + m 1 x m x
141 31 absge0d φ x + m 1 x 0 X L m m
142 118 absge0d φ x + m 1 x 0 H x 2 m U
143 16 17 24 syl2an φ x + m 1 x X L m
144 136 rpcnd φ x + m 1 x m
145 136 rpne0d φ x + m 1 x m 0
146 143 144 145 absdivd φ x + m 1 x X L m m = X L m m
147 136 rprege0d φ x + m 1 x m 0 m
148 absid m 0 m m = m
149 147 148 syl φ x + m 1 x m = m
150 149 oveq2d φ x + m 1 x X L m m = X L m m
151 146 150 eqtrd φ x + m 1 x X L m m = X L m m
152 143 abscld φ x + m 1 x X L m
153 1red φ x + m 1 x 1
154 eqid Base Z = Base Z
155 20 ad2antrr φ x + m 1 x X D
156 3 nnnn0d φ N 0
157 1 154 2 znzrhfo N 0 L : onto Base Z
158 fof L : onto Base Z L : Base Z
159 156 157 158 3syl φ L : Base Z
160 159 adantr φ x + L : Base Z
161 elfzelz m 1 x m
162 ffvelrn L : Base Z m L m Base Z
163 160 161 162 syl2an φ x + m 1 x L m Base Z
164 4 5 1 154 155 163 dchrabs2 φ x + m 1 x X L m 1
165 152 153 136 164 lediv1dd φ x + m 1 x X L m m 1 m
166 151 165 eqbrtrd φ x + m 1 x X L m m 1 m
167 13 108 divsqrtsum2 φ x + m 1 x x 2 m + H x 2 m U 1 x 2 m
168 100 167 mpdan φ x + m 1 x H x 2 m U 1 x 2 m
169 97 rprege0d φ x + x 2 0 x 2
170 sqrtdiv x 2 0 x 2 m + x 2 m = x 2 m
171 169 98 170 syl2an φ x + m 1 x x 2 m = x 2 m
172 126 ad2antlr φ x + m 1 x x 0 x
173 sqrtsq x 0 x x 2 = x
174 172 173 syl φ x + m 1 x x 2 = x
175 174 oveq1d φ x + m 1 x x 2 m = x m
176 171 175 eqtrd φ x + m 1 x x 2 m = x m
177 176 oveq2d φ x + m 1 x 1 x 2 m = 1 x m
178 rpcnne0 x + x x 0
179 178 ad2antlr φ x + m 1 x x x 0
180 136 rpcnne0d φ x + m 1 x m m 0
181 recdiv x x 0 m m 0 1 x m = m x
182 179 180 181 syl2anc φ x + m 1 x 1 x m = m x
183 177 182 eqtrd φ x + m 1 x 1 x 2 m = m x
184 168 183 breqtrd φ x + m 1 x H x 2 m U m x
185 134 137 138 140 141 142 166 184 lemul12ad φ x + m 1 x X L m m H x 2 m U 1 m m x
186 31 118 absmuld φ x + m 1 x X L m m H x 2 m U = X L m m H x 2 m U
187 1cnd φ x + m 1 x 1
188 dmdcan m m 0 x x 0 1 m x 1 m = 1 x
189 180 179 187 188 syl3anc φ x + m 1 x m x 1 m = 1 x
190 139 rpcnd φ x + m 1 x m x
191 reccl m m 0 1 m
192 180 191 syl φ x + m 1 x 1 m
193 190 192 mulcomd φ x + m 1 x m x 1 m = 1 m m x
194 189 193 eqtr3d φ x + m 1 x 1 x = 1 m m x
195 185 186 194 3brtr4d φ x + m 1 x X L m m H x 2 m U 1 x
196 15 122 133 195 fsumle φ x + m = 1 x X L m m H x 2 m U m = 1 x 1 x
197 flge0nn0 x 0 x x 0
198 hashfz1 x 0 1 x = x
199 127 197 198 3syl φ x + 1 x = x
200 199 oveq1d φ x + 1 x 1 x = x 1 x
201 94 rpreccld φ x + 1 x +
202 201 rpcnd φ x + 1 x
203 fsumconst 1 x Fin 1 x m = 1 x 1 x = 1 x 1 x
204 15 202 203 syl2anc φ x + m = 1 x 1 x = 1 x 1 x
205 130 recnd φ x + x
206 178 adantl φ x + x x 0
207 206 simpld φ x + x
208 206 simprd φ x + x 0
209 205 207 208 divrecd φ x + x x = x 1 x
210 200 204 209 3eqtr4d φ x + m = 1 x 1 x = x x
211 196 210 breqtrd φ x + m = 1 x X L m m H x 2 m U x x
212 flle x x x
213 128 212 syl φ x + x x
214 128 recnd φ x + x
215 214 mulid1d φ x + x 1 = x
216 213 215 breqtrrd φ x + x x 1
217 rpregt0 x + x 0 < x
218 217 adantl φ x + x 0 < x
219 ledivmul x 1 x 0 < x x x 1 x x 1
220 130 124 218 219 syl3anc φ x + x x 1 x x 1
221 216 220 mpbird φ x + x x 1
222 123 131 124 211 221 letrd φ x + m = 1 x X L m m H x 2 m U 1
223 121 123 124 125 222 letrd φ x + m = 1 x X L m m H x 2 m U 1
224 223 adantrr φ x + 1 x m = 1 x X L m m H x 2 m U 1
225 70 120 88 88 224 elo1d φ x + m = 1 x X L m m H x 2 m U 𝑂1
226 117 225 eqeltrrd φ x + m = 1 x X L m m H x 2 m m = 1 x X L m m U 𝑂1
227 106 107 226 o1dif φ x + m = 1 x X L m m H x 2 m 𝑂1 x + m = 1 x X L m m U 𝑂1
228 93 227 mpbird φ x + m = 1 x X L m m H x 2 m 𝑂1