Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum2.g |
|
5 |
|
rpvmasum2.d |
|
6 |
|
rpvmasum2.1 |
|
7 |
|
rpvmasum2.w |
|
8 |
|
dchrisum0.b |
|
9 |
|
dchrisum0lem1.f |
|
10 |
7
|
ssrab3 |
|
11 |
10 8
|
sselid |
|
12 |
11
|
eldifad |
|
13 |
|
eldifsni |
|
14 |
11 13
|
syl |
|
15 |
|
fveq2 |
|
16 |
15
|
oveq2d |
|
17 |
|
1nn |
|
18 |
17
|
a1i |
|
19 |
|
rpsqrtcl |
|
20 |
19
|
adantl |
|
21 |
20
|
rprecred |
|
22 |
|
simp3r |
|
23 |
|
simp2l |
|
24 |
23
|
rprege0d |
|
25 |
|
simp2r |
|
26 |
25
|
rprege0d |
|
27 |
|
sqrtle |
|
28 |
24 26 27
|
syl2anc |
|
29 |
22 28
|
mpbid |
|
30 |
23
|
rpsqrtcld |
|
31 |
25
|
rpsqrtcld |
|
32 |
30 31
|
lerecd |
|
33 |
29 32
|
mpbid |
|
34 |
|
sqrtlim |
|
35 |
34
|
a1i |
|
36 |
|
2fveq3 |
|
37 |
|
fveq2 |
|
38 |
37
|
oveq2d |
|
39 |
36 38
|
oveq12d |
|
40 |
39
|
cbvmptv |
|
41 |
1 2 3 4 5 6 12 14 16 18 21 33 35 40
|
dchrisum |
|
42 |
12
|
adantr |
|
43 |
|
nnz |
|
44 |
43
|
adantl |
|
45 |
4 1 5 2 42 44
|
dchrzrhcl |
|
46 |
|
simpr |
|
47 |
46
|
nnrpd |
|
48 |
47
|
rpsqrtcld |
|
49 |
48
|
rpcnd |
|
50 |
48
|
rpne0d |
|
51 |
45 49 50
|
divrecd |
|
52 |
51
|
mpteq2dva |
|
53 |
36 37
|
oveq12d |
|
54 |
53
|
cbvmptv |
|
55 |
9 54
|
eqtri |
|
56 |
52 55 40
|
3eqtr4g |
|
57 |
56
|
seqeq3d |
|
58 |
57
|
breq1d |
|
59 |
58
|
adantr |
|
60 |
|
2fveq3 |
|
61 |
60
|
fvoveq1d |
|
62 |
|
fveq2 |
|
63 |
62
|
oveq2d |
|
64 |
61 63
|
breq12d |
|
65 |
64
|
cbvralvw |
|
66 |
56
|
ad2antrr |
|
67 |
66
|
seqeq3d |
|
68 |
67
|
fveq1d |
|
69 |
68
|
fvoveq1d |
|
70 |
|
elrege0 |
|
71 |
70
|
simplbi |
|
72 |
71
|
ad2antlr |
|
73 |
72
|
recnd |
|
74 |
|
1re |
|
75 |
|
elicopnf |
|
76 |
74 75
|
ax-mp |
|
77 |
76
|
simplbi |
|
78 |
77
|
adantl |
|
79 |
|
0red |
|
80 |
|
1red |
|
81 |
|
0lt1 |
|
82 |
81
|
a1i |
|
83 |
76
|
simprbi |
|
84 |
83
|
adantl |
|
85 |
79 80 78 82 84
|
ltletrd |
|
86 |
78 85
|
elrpd |
|
87 |
86
|
rpsqrtcld |
|
88 |
87
|
rpcnd |
|
89 |
87
|
rpne0d |
|
90 |
73 88 89
|
divrecd |
|
91 |
69 90
|
breq12d |
|
92 |
91
|
ralbidva |
|
93 |
65 92
|
syl5bb |
|
94 |
59 93
|
anbi12d |
|
95 |
94
|
rexbidva |
|
96 |
95
|
exbidv |
|
97 |
41 96
|
mpbird |
|