Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrisum.2 |
|
10 |
|
dchrisum.3 |
|
11 |
|
dchrisum.4 |
|
12 |
|
dchrisum.5 |
|
13 |
|
dchrisum.6 |
|
14 |
|
dchrisum.7 |
|
15 |
|
dchrisum.9 |
|
16 |
|
dchrisum.10 |
|
17 |
|
fzodisj |
|
18 |
17
|
a1i |
|
19 |
3
|
nnnn0d |
|
20 |
19
|
adantr |
|
21 |
|
nn0re |
|
22 |
21
|
adantl |
|
23 |
3
|
adantr |
|
24 |
22 23
|
nndivred |
|
25 |
23
|
nnrpd |
|
26 |
|
nn0ge0 |
|
27 |
26
|
adantl |
|
28 |
22 25 27
|
divge0d |
|
29 |
|
flge0nn0 |
|
30 |
24 28 29
|
syl2anc |
|
31 |
20 30
|
nn0mulcld |
|
32 |
|
flle |
|
33 |
24 32
|
syl |
|
34 |
|
reflcl |
|
35 |
24 34
|
syl |
|
36 |
35 22 25
|
lemuldiv2d |
|
37 |
33 36
|
mpbird |
|
38 |
|
fznn0 |
|
39 |
38
|
adantl |
|
40 |
31 37 39
|
mpbir2and |
|
41 |
|
fzosplit |
|
42 |
40 41
|
syl |
|
43 |
|
fzofi |
|
44 |
43
|
a1i |
|
45 |
7
|
ad2antrr |
|
46 |
|
elfzoelz |
|
47 |
46
|
adantl |
|
48 |
4 1 5 2 45 47
|
dchrzrhcl |
|
49 |
18 42 44 48
|
fsumsplit |
|
50 |
|
oveq2 |
|
51 |
50
|
oveq2d |
|
52 |
51
|
sumeq1d |
|
53 |
52
|
eqeq1d |
|
54 |
53
|
imbi2d |
|
55 |
|
oveq2 |
|
56 |
55
|
oveq2d |
|
57 |
56
|
sumeq1d |
|
58 |
57
|
eqeq1d |
|
59 |
58
|
imbi2d |
|
60 |
|
oveq2 |
|
61 |
60
|
oveq2d |
|
62 |
61
|
sumeq1d |
|
63 |
62
|
eqeq1d |
|
64 |
63
|
imbi2d |
|
65 |
|
oveq2 |
|
66 |
65
|
oveq2d |
|
67 |
66
|
sumeq1d |
|
68 |
67
|
eqeq1d |
|
69 |
68
|
imbi2d |
|
70 |
3
|
nncnd |
|
71 |
70
|
mul01d |
|
72 |
71
|
oveq2d |
|
73 |
|
fzo0 |
|
74 |
72 73
|
eqtrdi |
|
75 |
74
|
sumeq1d |
|
76 |
|
sum0 |
|
77 |
75 76
|
eqtrdi |
|
78 |
|
oveq1 |
|
79 |
|
fzodisj |
|
80 |
79
|
a1i |
|
81 |
|
nn0re |
|
82 |
81
|
adantl |
|
83 |
82
|
lep1d |
|
84 |
|
peano2re |
|
85 |
82 84
|
syl |
|
86 |
3
|
adantr |
|
87 |
86
|
nnred |
|
88 |
86
|
nngt0d |
|
89 |
|
lemul2 |
|
90 |
82 85 87 88 89
|
syl112anc |
|
91 |
83 90
|
mpbid |
|
92 |
|
nn0mulcl |
|
93 |
19 92
|
sylan |
|
94 |
|
nn0uz |
|
95 |
93 94
|
eleqtrdi |
|
96 |
|
nn0p1nn |
|
97 |
|
nnmulcl |
|
98 |
3 96 97
|
syl2an |
|
99 |
98
|
nnzd |
|
100 |
|
elfz5 |
|
101 |
95 99 100
|
syl2anc |
|
102 |
91 101
|
mpbird |
|
103 |
|
fzosplit |
|
104 |
102 103
|
syl |
|
105 |
|
fzofi |
|
106 |
105
|
a1i |
|
107 |
7
|
ad2antrr |
|
108 |
|
elfzoelz |
|
109 |
108
|
adantl |
|
110 |
4 1 5 2 107 109
|
dchrzrhcl |
|
111 |
80 104 106 110
|
fsumsplit |
|
112 |
86
|
nncnd |
|
113 |
82
|
recnd |
|
114 |
|
1cnd |
|
115 |
112 113 114
|
adddid |
|
116 |
112
|
mulid1d |
|
117 |
116
|
oveq2d |
|
118 |
115 117
|
eqtrd |
|
119 |
118
|
oveq2d |
|
120 |
119
|
sumeq1d |
|
121 |
|
oveq2 |
|
122 |
121
|
oveq2d |
|
123 |
122
|
sumeq1d |
|
124 |
|
oveq2 |
|
125 |
124
|
sumeq1d |
|
126 |
123 125
|
eqeq12d |
|
127 |
93
|
nn0zd |
|
128 |
127
|
adantr |
|
129 |
|
nn0z |
|
130 |
|
zaddcl |
|
131 |
127 129 130
|
syl2an |
|
132 |
|
peano2zm |
|
133 |
131 132
|
syl |
|
134 |
7
|
ad3antrrr |
|
135 |
|
elfzelz |
|
136 |
135
|
adantl |
|
137 |
4 1 5 2 134 136
|
dchrzrhcl |
|
138 |
|
2fveq3 |
|
139 |
128 128 133 137 138
|
fsumshftm |
|
140 |
|
fzoval |
|
141 |
131 140
|
syl |
|
142 |
141
|
sumeq1d |
|
143 |
129
|
adantl |
|
144 |
|
fzoval |
|
145 |
143 144
|
syl |
|
146 |
128
|
zcnd |
|
147 |
146
|
subidd |
|
148 |
131
|
zcnd |
|
149 |
|
1cnd |
|
150 |
148 149 146
|
sub32d |
|
151 |
|
nn0cn |
|
152 |
151
|
adantl |
|
153 |
146 152
|
pncan2d |
|
154 |
153
|
oveq1d |
|
155 |
150 154
|
eqtrd |
|
156 |
147 155
|
oveq12d |
|
157 |
145 156
|
eqtr4d |
|
158 |
157
|
sumeq1d |
|
159 |
139 142 158
|
3eqtr4d |
|
160 |
3
|
nnzd |
|
161 |
|
nn0z |
|
162 |
|
dvdsmul1 |
|
163 |
160 161 162
|
syl2an |
|
164 |
163
|
ad2antrr |
|
165 |
|
elfzoelz |
|
166 |
165
|
adantl |
|
167 |
166
|
zcnd |
|
168 |
146
|
adantr |
|
169 |
167 168
|
pncan2d |
|
170 |
164 169
|
breqtrrd |
|
171 |
86
|
nnnn0d |
|
172 |
171
|
ad2antrr |
|
173 |
|
zaddcl |
|
174 |
165 128 173
|
syl2anr |
|
175 |
1 2
|
zndvds |
|
176 |
172 174 166 175
|
syl3anc |
|
177 |
170 176
|
mpbird |
|
178 |
177
|
fveq2d |
|
179 |
178
|
sumeq2dv |
|
180 |
|
2fveq3 |
|
181 |
180
|
cbvsumv |
|
182 |
179 181
|
eqtrdi |
|
183 |
159 182
|
eqtrd |
|
184 |
183
|
ralrimiva |
|
185 |
126 184 171
|
rspcdva |
|
186 |
|
fveq2 |
|
187 |
3
|
nnne0d |
|
188 |
|
ifnefalse |
|
189 |
187 188
|
syl |
|
190 |
|
fzofi |
|
191 |
189 190
|
eqeltrdi |
|
192 |
|
eqid |
|
193 |
2
|
reseq1i |
|
194 |
|
eqid |
|
195 |
1 192 193 194
|
znf1o |
|
196 |
19 195
|
syl |
|
197 |
|
fvres |
|
198 |
197
|
adantl |
|
199 |
4 1 5 192 7
|
dchrf |
|
200 |
199
|
ffvelrnda |
|
201 |
186 191 196 198 200
|
fsumf1o |
|
202 |
4 1 5 6 7 192
|
dchrsum |
|
203 |
|
ifnefalse |
|
204 |
8 203
|
syl |
|
205 |
202 204
|
eqtrd |
|
206 |
189
|
sumeq1d |
|
207 |
201 205 206
|
3eqtr3rd |
|
208 |
207
|
adantr |
|
209 |
120 185 208
|
3eqtrd |
|
210 |
209
|
oveq2d |
|
211 |
|
00id |
|
212 |
210 211
|
eqtr2di |
|
213 |
111 212
|
eqeq12d |
|
214 |
78 213
|
syl5ibr |
|
215 |
214
|
expcom |
|
216 |
215
|
a2d |
|
217 |
54 59 64 69 77 216
|
nn0ind |
|
218 |
217
|
impcom |
|
219 |
30 218
|
syldan |
|
220 |
|
modval |
|
221 |
22 25 220
|
syl2anc |
|
222 |
221
|
oveq2d |
|
223 |
31
|
nn0cnd |
|
224 |
|
nn0cn |
|
225 |
224
|
adantl |
|
226 |
223 225
|
pncan3d |
|
227 |
222 226
|
eqtr2d |
|
228 |
227
|
oveq2d |
|
229 |
228
|
sumeq1d |
|
230 |
|
nn0z |
|
231 |
|
zmodcl |
|
232 |
230 3 231
|
syl2anr |
|
233 |
184
|
ralrimiva |
|
234 |
233
|
adantr |
|
235 |
|
oveq2 |
|
236 |
235
|
oveq1d |
|
237 |
235 236
|
oveq12d |
|
238 |
237
|
sumeq1d |
|
239 |
238
|
eqeq1d |
|
240 |
|
oveq2 |
|
241 |
240
|
oveq2d |
|
242 |
241
|
sumeq1d |
|
243 |
|
oveq2 |
|
244 |
243
|
sumeq1d |
|
245 |
242 244
|
eqeq12d |
|
246 |
239 245
|
rspc2va |
|
247 |
30 232 234 246
|
syl21anc |
|
248 |
229 247
|
eqtrd |
|
249 |
219 248
|
oveq12d |
|
250 |
|
fzofi |
|
251 |
250
|
a1i |
|
252 |
7
|
ad2antrr |
|
253 |
|
elfzoelz |
|
254 |
253
|
adantl |
|
255 |
4 1 5 2 252 254
|
dchrzrhcl |
|
256 |
251 255
|
fsumcl |
|
257 |
256
|
addid2d |
|
258 |
49 249 257
|
3eqtrd |
|
259 |
258
|
fveq2d |
|
260 |
|
oveq2 |
|
261 |
260
|
sumeq1d |
|
262 |
261
|
fveq2d |
|
263 |
262
|
breq1d |
|
264 |
16
|
adantr |
|
265 |
|
zmodfzo |
|
266 |
230 3 265
|
syl2anr |
|
267 |
263 264 266
|
rspcdva |
|
268 |
259 267
|
eqbrtrd |
|