Metamath Proof Explorer


Theorem dchrisumlem2

Description: Lemma for dchrisum . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrisum.2 n = x A = B
dchrisum.3 φ M
dchrisum.4 φ n + A
dchrisum.5 φ n + x + M n n x B A
dchrisum.6 φ n + A 0
dchrisum.7 F = n X L n A
dchrisum.9 φ R
dchrisum.10 φ u 0 ..^ N n 0 ..^ u X L n R
dchrisumlem2.1 φ U +
dchrisumlem2.2 φ M U
dchrisumlem2.3 φ U I + 1
dchrisumlem2.4 φ I
dchrisumlem2.5 φ J I
Assertion dchrisumlem2 φ seq 1 + F J seq 1 + F I 2 R U / n A

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrisum.2 n = x A = B
10 dchrisum.3 φ M
11 dchrisum.4 φ n + A
12 dchrisum.5 φ n + x + M n n x B A
13 dchrisum.6 φ n + A 0
14 dchrisum.7 F = n X L n A
15 dchrisum.9 φ R
16 dchrisum.10 φ u 0 ..^ N n 0 ..^ u X L n R
17 dchrisumlem2.1 φ U +
18 dchrisumlem2.2 φ M U
19 dchrisumlem2.3 φ U I + 1
20 dchrisumlem2.4 φ I
21 dchrisumlem2.5 φ J I
22 fzodisj 1 ..^ I + 1 I + 1 ..^ J + 1 =
23 22 a1i φ 1 ..^ I + 1 I + 1 ..^ J + 1 =
24 20 peano2nnd φ I + 1
25 nnuz = 1
26 24 25 eleqtrdi φ I + 1 1
27 eluzp1p1 J I J + 1 I + 1
28 21 27 syl φ J + 1 I + 1
29 elfzuzb I + 1 1 J + 1 I + 1 1 J + 1 I + 1
30 26 28 29 sylanbrc φ I + 1 1 J + 1
31 fzosplit I + 1 1 J + 1 1 ..^ J + 1 = 1 ..^ I + 1 I + 1 ..^ J + 1
32 30 31 syl φ 1 ..^ J + 1 = 1 ..^ I + 1 I + 1 ..^ J + 1
33 fzofi 1 ..^ J + 1 Fin
34 33 a1i φ 1 ..^ J + 1 Fin
35 elfzouz i 1 ..^ J + 1 i 1
36 35 25 eleqtrrdi i 1 ..^ J + 1 i
37 7 adantr φ i X D
38 nnz i i
39 38 adantl φ i i
40 4 1 5 2 37 39 dchrzrhcl φ i X L i
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dchrisumlema φ i + i / n A i M +∞ 0 i / n A
42 41 simpld φ i + i / n A
43 nnrp i i +
44 42 43 impel φ i i / n A
45 44 recnd φ i i / n A
46 40 45 mulcld φ i X L i i / n A
47 36 46 sylan2 φ i 1 ..^ J + 1 X L i i / n A
48 23 32 34 47 fsumsplit φ i 1 ..^ J + 1 X L i i / n A = i 1 ..^ I + 1 X L i i / n A + i I + 1 ..^ J + 1 X L i i / n A
49 eluzelz J I J
50 fzval3 J 1 J = 1 ..^ J + 1
51 21 49 50 3syl φ 1 J = 1 ..^ J + 1
52 51 sumeq1d φ i = 1 J X L i i / n A = i 1 ..^ J + 1 X L i i / n A
53 20 nnzd φ I
54 fzval3 I 1 I = 1 ..^ I + 1
55 53 54 syl φ 1 I = 1 ..^ I + 1
56 55 sumeq1d φ i = 1 I X L i i / n A = i 1 ..^ I + 1 X L i i / n A
57 56 oveq1d φ i = 1 I X L i i / n A + i I + 1 ..^ J + 1 X L i i / n A = i 1 ..^ I + 1 X L i i / n A + i I + 1 ..^ J + 1 X L i i / n A
58 48 52 57 3eqtr4d φ i = 1 J X L i i / n A = i = 1 I X L i i / n A + i I + 1 ..^ J + 1 X L i i / n A
59 elfznn i 1 J i
60 simpr φ i i
61 nfcv _ n i
62 nfcv _ n X L i
63 nfcv _ n ×
64 nfcsb1v _ n i / n A
65 62 63 64 nfov _ n X L i i / n A
66 2fveq3 n = i X L n = X L i
67 csbeq1a n = i A = i / n A
68 66 67 oveq12d n = i X L n A = X L i i / n A
69 61 65 68 14 fvmptf i X L i i / n A F i = X L i i / n A
70 60 46 69 syl2anc φ i F i = X L i i / n A
71 59 70 sylan2 φ i 1 J F i = X L i i / n A
72 20 25 eleqtrdi φ I 1
73 uztrn J I I 1 J 1
74 21 72 73 syl2anc φ J 1
75 59 46 sylan2 φ i 1 J X L i i / n A
76 71 74 75 fsumser φ i = 1 J X L i i / n A = seq 1 + F J
77 58 76 eqtr3d φ i = 1 I X L i i / n A + i I + 1 ..^ J + 1 X L i i / n A = seq 1 + F J
78 elfznn i 1 I i
79 78 70 sylan2 φ i 1 I F i = X L i i / n A
80 78 46 sylan2 φ i 1 I X L i i / n A
81 79 72 80 fsumser φ i = 1 I X L i i / n A = seq 1 + F I
82 77 81 oveq12d φ i = 1 I X L i i / n A + i I + 1 ..^ J + 1 X L i i / n A - i = 1 I X L i i / n A = seq 1 + F J seq 1 + F I
83 fzfid φ 1 I Fin
84 83 80 fsumcl φ i = 1 I X L i i / n A
85 fzofi I + 1 ..^ J + 1 Fin
86 85 a1i φ I + 1 ..^ J + 1 Fin
87 ssun2 I + 1 ..^ J + 1 1 ..^ I + 1 I + 1 ..^ J + 1
88 87 32 sseqtrrid φ I + 1 ..^ J + 1 1 ..^ J + 1
89 88 sselda φ i I + 1 ..^ J + 1 i 1 ..^ J + 1
90 89 47 syldan φ i I + 1 ..^ J + 1 X L i i / n A
91 86 90 fsumcl φ i I + 1 ..^ J + 1 X L i i / n A
92 84 91 pncan2d φ i = 1 I X L i i / n A + i I + 1 ..^ J + 1 X L i i / n A - i = 1 I X L i i / n A = i I + 1 ..^ J + 1 X L i i / n A
93 82 92 eqtr3d φ seq 1 + F J seq 1 + F I = i I + 1 ..^ J + 1 X L i i / n A
94 93 fveq2d φ seq 1 + F J seq 1 + F I = i I + 1 ..^ J + 1 X L i i / n A
95 91 abscld φ i I + 1 ..^ J + 1 X L i i / n A
96 2re 2
97 96 a1i φ 2
98 97 15 remulcld φ 2 R
99 44 ralrimiva φ i i / n A
100 csbeq1 i = I + 1 i / n A = I + 1 / n A
101 100 eleq1d i = I + 1 i / n A I + 1 / n A
102 101 rspcv I + 1 i i / n A I + 1 / n A
103 24 99 102 sylc φ I + 1 / n A
104 98 103 remulcld φ 2 R I + 1 / n A
105 11 ralrimiva φ n + A
106 nfcsb1v _ n U / n A
107 106 nfel1 n U / n A
108 csbeq1a n = U A = U / n A
109 108 eleq1d n = U A U / n A
110 107 109 rspc U + n + A U / n A
111 17 105 110 sylc φ U / n A
112 98 111 remulcld φ 2 R U / n A
113 74 25 eleqtrrdi φ J
114 113 peano2nnd φ J + 1
115 114 nnrpd φ J + 1 +
116 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dchrisumlema φ J + 1 + J + 1 / n A J + 1 M +∞ 0 J + 1 / n A
117 116 simpld φ J + 1 + J + 1 / n A
118 115 117 mpd φ J + 1 / n A
119 118 recnd φ J + 1 / n A
120 fzofi 0 ..^ J + 1 Fin
121 120 a1i φ 0 ..^ J + 1 Fin
122 elfzoelz n 0 ..^ J + 1 n
123 7 adantr φ n X D
124 simpr φ n n
125 4 1 5 2 123 124 dchrzrhcl φ n X L n
126 122 125 sylan2 φ n 0 ..^ J + 1 X L n
127 121 126 fsumcl φ n 0 ..^ J + 1 X L n
128 119 127 mulcld φ J + 1 / n A n 0 ..^ J + 1 X L n
129 103 recnd φ I + 1 / n A
130 fzofi 0 ..^ I + 1 Fin
131 130 a1i φ 0 ..^ I + 1 Fin
132 elfzoelz n 0 ..^ I + 1 n
133 132 125 sylan2 φ n 0 ..^ I + 1 X L n
134 131 133 fsumcl φ n 0 ..^ I + 1 X L n
135 129 134 mulcld φ I + 1 / n A n 0 ..^ I + 1 X L n
136 128 135 subcld φ J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n
137 136 abscld φ J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n
138 89 36 syl φ i I + 1 ..^ J + 1 i
139 peano2nn i i + 1
140 139 nnrpd i i + 1 +
141 nfcsb1v _ n i + 1 / n A
142 141 nfel1 n i + 1 / n A
143 csbeq1a n = i + 1 A = i + 1 / n A
144 143 eleq1d n = i + 1 A i + 1 / n A
145 142 144 rspc i + 1 + n + A i + 1 / n A
146 145 impcom n + A i + 1 + i + 1 / n A
147 105 140 146 syl2an φ i i + 1 / n A
148 147 44 resubcld φ i i + 1 / n A i / n A
149 148 recnd φ i i + 1 / n A i / n A
150 fzofi 0 ..^ i + 1 Fin
151 150 a1i φ 0 ..^ i + 1 Fin
152 elfzoelz n 0 ..^ i + 1 n
153 152 125 sylan2 φ n 0 ..^ i + 1 X L n
154 151 153 fsumcl φ n 0 ..^ i + 1 X L n
155 154 adantr φ i n 0 ..^ i + 1 X L n
156 149 155 mulcld φ i i + 1 / n A i / n A n 0 ..^ i + 1 X L n
157 138 156 syldan φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
158 86 157 fsumcl φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
159 158 abscld φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
160 137 159 readdcld φ J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n + i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
161 40 45 mulcomd φ i X L i i / n A = i / n A X L i
162 nnnn0 i i 0
163 162 adantl φ i i 0
164 nn0uz 0 = 0
165 163 164 eleqtrdi φ i i 0
166 elfzelz n 0 i n
167 125 adantlr φ i n X L n
168 166 167 sylan2 φ i n 0 i X L n
169 165 168 66 fzosump1 φ i n 0 ..^ i + 1 X L n = n 0 ..^ i X L n + X L i
170 169 oveq1d φ i n 0 ..^ i + 1 X L n n 0 ..^ i X L n = n 0 ..^ i X L n + X L i - n 0 ..^ i X L n
171 fzofi 0 ..^ i Fin
172 171 a1i φ i 0 ..^ i Fin
173 elfzoelz n 0 ..^ i n
174 173 167 sylan2 φ i n 0 ..^ i X L n
175 172 174 fsumcl φ i n 0 ..^ i X L n
176 175 40 pncan2d φ i n 0 ..^ i X L n + X L i - n 0 ..^ i X L n = X L i
177 170 176 eqtr2d φ i X L i = n 0 ..^ i + 1 X L n n 0 ..^ i X L n
178 177 oveq2d φ i i / n A X L i = i / n A n 0 ..^ i + 1 X L n n 0 ..^ i X L n
179 161 178 eqtrd φ i X L i i / n A = i / n A n 0 ..^ i + 1 X L n n 0 ..^ i X L n
180 138 179 syldan φ i I + 1 ..^ J + 1 X L i i / n A = i / n A n 0 ..^ i + 1 X L n n 0 ..^ i X L n
181 180 sumeq2dv φ i I + 1 ..^ J + 1 X L i i / n A = i I + 1 ..^ J + 1 i / n A n 0 ..^ i + 1 X L n n 0 ..^ i X L n
182 csbeq1 k = i k / n A = i / n A
183 oveq2 k = i 0 ..^ k = 0 ..^ i
184 183 sumeq1d k = i n 0 ..^ k X L n = n 0 ..^ i X L n
185 182 184 jca k = i k / n A = i / n A n 0 ..^ k X L n = n 0 ..^ i X L n
186 csbeq1 k = i + 1 k / n A = i + 1 / n A
187 oveq2 k = i + 1 0 ..^ k = 0 ..^ i + 1
188 187 sumeq1d k = i + 1 n 0 ..^ k X L n = n 0 ..^ i + 1 X L n
189 186 188 jca k = i + 1 k / n A = i + 1 / n A n 0 ..^ k X L n = n 0 ..^ i + 1 X L n
190 csbeq1 k = I + 1 k / n A = I + 1 / n A
191 oveq2 k = I + 1 0 ..^ k = 0 ..^ I + 1
192 191 sumeq1d k = I + 1 n 0 ..^ k X L n = n 0 ..^ I + 1 X L n
193 190 192 jca k = I + 1 k / n A = I + 1 / n A n 0 ..^ k X L n = n 0 ..^ I + 1 X L n
194 csbeq1 k = J + 1 k / n A = J + 1 / n A
195 oveq2 k = J + 1 0 ..^ k = 0 ..^ J + 1
196 195 sumeq1d k = J + 1 n 0 ..^ k X L n = n 0 ..^ J + 1 X L n
197 194 196 jca k = J + 1 k / n A = J + 1 / n A n 0 ..^ k X L n = n 0 ..^ J + 1 X L n
198 45 ralrimiva φ i i / n A
199 elfzuz k I + 1 J + 1 k I + 1
200 eluznn I + 1 k I + 1 k
201 24 199 200 syl2an φ k I + 1 J + 1 k
202 csbeq1 i = k i / n A = k / n A
203 202 eleq1d i = k i / n A k / n A
204 203 rspccva i i / n A k k / n A
205 198 201 204 syl2an2r φ k I + 1 J + 1 k / n A
206 fzofi 0 ..^ k Fin
207 206 a1i φ 0 ..^ k Fin
208 elfzoelz n 0 ..^ k n
209 208 125 sylan2 φ n 0 ..^ k X L n
210 207 209 fsumcl φ n 0 ..^ k X L n
211 210 adantr φ k I + 1 J + 1 n 0 ..^ k X L n
212 185 189 193 197 28 205 211 fsumparts φ i I + 1 ..^ J + 1 i / n A n 0 ..^ i + 1 X L n n 0 ..^ i X L n = J + 1 / n A n 0 ..^ J + 1 X L n - I + 1 / n A n 0 ..^ I + 1 X L n - i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
213 181 212 eqtrd φ i I + 1 ..^ J + 1 X L i i / n A = J + 1 / n A n 0 ..^ J + 1 X L n - I + 1 / n A n 0 ..^ I + 1 X L n - i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
214 213 fveq2d φ i I + 1 ..^ J + 1 X L i i / n A = J + 1 / n A n 0 ..^ J + 1 X L n - I + 1 / n A n 0 ..^ I + 1 X L n - i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
215 136 158 abs2dif2d φ J + 1 / n A n 0 ..^ J + 1 X L n - I + 1 / n A n 0 ..^ I + 1 X L n - i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n + i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
216 214 215 eqbrtrd φ i I + 1 ..^ J + 1 X L i i / n A J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n + i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
217 118 103 readdcld φ J + 1 / n A + I + 1 / n A
218 217 15 remulcld φ J + 1 / n A + I + 1 / n A R
219 182 186 190 194 28 205 telfsumo φ i I + 1 ..^ J + 1 i / n A i + 1 / n A = I + 1 / n A J + 1 / n A
220 138 44 syldan φ i I + 1 ..^ J + 1 i / n A
221 138 147 syldan φ i I + 1 ..^ J + 1 i + 1 / n A
222 220 221 resubcld φ i I + 1 ..^ J + 1 i / n A i + 1 / n A
223 86 222 fsumrecl φ i I + 1 ..^ J + 1 i / n A i + 1 / n A
224 219 223 eqeltrrd φ I + 1 / n A J + 1 / n A
225 224 15 remulcld φ I + 1 / n A J + 1 / n A R
226 128 abscld φ J + 1 / n A n 0 ..^ J + 1 X L n
227 135 abscld φ I + 1 / n A n 0 ..^ I + 1 X L n
228 226 227 readdcld φ J + 1 / n A n 0 ..^ J + 1 X L n + I + 1 / n A n 0 ..^ I + 1 X L n
229 128 135 abs2dif2d φ J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n J + 1 / n A n 0 ..^ J + 1 X L n + I + 1 / n A n 0 ..^ I + 1 X L n
230 118 15 remulcld φ J + 1 / n A R
231 103 15 remulcld φ I + 1 / n A R
232 119 127 absmuld φ J + 1 / n A n 0 ..^ J + 1 X L n = J + 1 / n A n 0 ..^ J + 1 X L n
233 eluzelre i M i
234 233 adantl φ i M i
235 eluzle i M M i
236 235 adantl φ i M M i
237 10 nnred φ M
238 237 adantr φ i M M
239 elicopnf M i M +∞ i M i
240 238 239 syl φ i M i M +∞ i M i
241 234 236 240 mpbir2and φ i M i M +∞
242 241 ex φ i M i M +∞
243 242 ssrdv φ M M +∞
244 10 nnzd φ M
245 53 peano2zd φ I + 1
246 17 rpred φ U
247 24 nnred φ I + 1
248 237 246 247 18 19 letrd φ M I + 1
249 eluz2 I + 1 M M I + 1 M I + 1
250 244 245 248 249 syl3anbrc φ I + 1 M
251 uztrn J + 1 I + 1 I + 1 M J + 1 M
252 28 250 251 syl2anc φ J + 1 M
253 243 252 sseldd φ J + 1 M +∞
254 116 simprd φ J + 1 M +∞ 0 J + 1 / n A
255 253 254 mpd φ 0 J + 1 / n A
256 118 255 absidd φ J + 1 / n A = J + 1 / n A
257 256 oveq1d φ J + 1 / n A n 0 ..^ J + 1 X L n = J + 1 / n A n 0 ..^ J + 1 X L n
258 232 257 eqtrd φ J + 1 / n A n 0 ..^ J + 1 X L n = J + 1 / n A n 0 ..^ J + 1 X L n
259 127 abscld φ n 0 ..^ J + 1 X L n
260 114 nnnn0d φ J + 1 0
261 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dchrisumlem1 φ J + 1 0 n 0 ..^ J + 1 X L n R
262 260 261 mpdan φ n 0 ..^ J + 1 X L n R
263 259 15 118 255 262 lemul2ad φ J + 1 / n A n 0 ..^ J + 1 X L n J + 1 / n A R
264 258 263 eqbrtrd φ J + 1 / n A n 0 ..^ J + 1 X L n J + 1 / n A R
265 129 134 absmuld φ I + 1 / n A n 0 ..^ I + 1 X L n = I + 1 / n A n 0 ..^ I + 1 X L n
266 243 250 sseldd φ I + 1 M +∞
267 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dchrisumlema φ I + 1 + I + 1 / n A I + 1 M +∞ 0 I + 1 / n A
268 267 simprd φ I + 1 M +∞ 0 I + 1 / n A
269 266 268 mpd φ 0 I + 1 / n A
270 103 269 absidd φ I + 1 / n A = I + 1 / n A
271 270 oveq1d φ I + 1 / n A n 0 ..^ I + 1 X L n = I + 1 / n A n 0 ..^ I + 1 X L n
272 265 271 eqtrd φ I + 1 / n A n 0 ..^ I + 1 X L n = I + 1 / n A n 0 ..^ I + 1 X L n
273 134 abscld φ n 0 ..^ I + 1 X L n
274 24 nnnn0d φ I + 1 0
275 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dchrisumlem1 φ I + 1 0 n 0 ..^ I + 1 X L n R
276 274 275 mpdan φ n 0 ..^ I + 1 X L n R
277 273 15 103 269 276 lemul2ad φ I + 1 / n A n 0 ..^ I + 1 X L n I + 1 / n A R
278 272 277 eqbrtrd φ I + 1 / n A n 0 ..^ I + 1 X L n I + 1 / n A R
279 226 227 230 231 264 278 le2addd φ J + 1 / n A n 0 ..^ J + 1 X L n + I + 1 / n A n 0 ..^ I + 1 X L n J + 1 / n A R + I + 1 / n A R
280 15 recnd φ R
281 119 129 280 adddird φ J + 1 / n A + I + 1 / n A R = J + 1 / n A R + I + 1 / n A R
282 279 281 breqtrrd φ J + 1 / n A n 0 ..^ J + 1 X L n + I + 1 / n A n 0 ..^ I + 1 X L n J + 1 / n A + I + 1 / n A R
283 137 228 218 229 282 letrd φ J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n J + 1 / n A + I + 1 / n A R
284 157 abscld φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
285 86 284 fsumrecl φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
286 86 157 fsumabs φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n
287 15 adantr φ i I + 1 ..^ J + 1 R
288 222 287 remulcld φ i I + 1 ..^ J + 1 i / n A i + 1 / n A R
289 138 149 syldan φ i I + 1 ..^ J + 1 i + 1 / n A i / n A
290 154 adantr φ i I + 1 ..^ J + 1 n 0 ..^ i + 1 X L n
291 289 290 absmuld φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n = i + 1 / n A i / n A n 0 ..^ i + 1 X L n
292 elfzouz i I + 1 ..^ J + 1 i I + 1
293 uztrn i I + 1 I + 1 M i M
294 292 250 293 syl2anr φ i I + 1 ..^ J + 1 i M
295 eluznn M i M i
296 10 295 sylan φ i M i
297 296 140 syl φ i M i + 1 +
298 296 nnrpd φ i M i +
299 12 3expia φ n + x + M n n x B A
300 299 ralrimivva φ n + x + M n n x B A
301 300 adantr φ i M n + x + M n n x B A
302 nfcv _ n +
303 nfv n M i i x
304 nfcv _ n B
305 nfcv _ n
306 304 305 64 nfbr n B i / n A
307 303 306 nfim n M i i x B i / n A
308 302 307 nfralw n x + M i i x B i / n A
309 breq2 n = i M n M i
310 breq1 n = i n x i x
311 309 310 anbi12d n = i M n n x M i i x
312 67 breq2d n = i B A B i / n A
313 311 312 imbi12d n = i M n n x B A M i i x B i / n A
314 313 ralbidv n = i x + M n n x B A x + M i i x B i / n A
315 308 314 rspc i + n + x + M n n x B A x + M i i x B i / n A
316 298 301 315 sylc φ i M x + M i i x B i / n A
317 234 lep1d φ i M i i + 1
318 236 317 jca φ i M M i i i + 1
319 breq2 x = i + 1 i x i i + 1
320 319 anbi2d x = i + 1 M i i x M i i i + 1
321 eqvisset x = i + 1 i + 1 V
322 eqtr3 x = i + 1 n = i + 1 x = n
323 9 equcoms x = n A = B
324 322 323 syl x = i + 1 n = i + 1 A = B
325 321 324 csbied x = i + 1 i + 1 / n A = B
326 325 eqcomd x = i + 1 B = i + 1 / n A
327 326 breq1d x = i + 1 B i / n A i + 1 / n A i / n A
328 320 327 imbi12d x = i + 1 M i i x B i / n A M i i i + 1 i + 1 / n A i / n A
329 328 rspcv i + 1 + x + M i i x B i / n A M i i i + 1 i + 1 / n A i / n A
330 297 316 318 329 syl3c φ i M i + 1 / n A i / n A
331 294 330 syldan φ i I + 1 ..^ J + 1 i + 1 / n A i / n A
332 221 220 331 abssuble0d φ i I + 1 ..^ J + 1 i + 1 / n A i / n A = i / n A i + 1 / n A
333 332 oveq1d φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n = i / n A i + 1 / n A n 0 ..^ i + 1 X L n
334 291 333 eqtrd φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n = i / n A i + 1 / n A n 0 ..^ i + 1 X L n
335 290 abscld φ i I + 1 ..^ J + 1 n 0 ..^ i + 1 X L n
336 220 221 subge0d φ i I + 1 ..^ J + 1 0 i / n A i + 1 / n A i + 1 / n A i / n A
337 331 336 mpbird φ i I + 1 ..^ J + 1 0 i / n A i + 1 / n A
338 138 peano2nnd φ i I + 1 ..^ J + 1 i + 1
339 338 nnnn0d φ i I + 1 ..^ J + 1 i + 1 0
340 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dchrisumlem1 φ i + 1 0 n 0 ..^ i + 1 X L n R
341 339 340 syldan φ i I + 1 ..^ J + 1 n 0 ..^ i + 1 X L n R
342 335 287 222 337 341 lemul2ad φ i I + 1 ..^ J + 1 i / n A i + 1 / n A n 0 ..^ i + 1 X L n i / n A i + 1 / n A R
343 334 342 eqbrtrd φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n i / n A i + 1 / n A R
344 86 284 288 343 fsumle φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n i I + 1 ..^ J + 1 i / n A i + 1 / n A R
345 222 recnd φ i I + 1 ..^ J + 1 i / n A i + 1 / n A
346 86 280 345 fsummulc1 φ i I + 1 ..^ J + 1 i / n A i + 1 / n A R = i I + 1 ..^ J + 1 i / n A i + 1 / n A R
347 219 oveq1d φ i I + 1 ..^ J + 1 i / n A i + 1 / n A R = I + 1 / n A J + 1 / n A R
348 346 347 eqtr3d φ i I + 1 ..^ J + 1 i / n A i + 1 / n A R = I + 1 / n A J + 1 / n A R
349 344 348 breqtrd φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n I + 1 / n A J + 1 / n A R
350 159 285 225 286 349 letrd φ i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n I + 1 / n A J + 1 / n A R
351 137 159 218 225 283 350 le2addd φ J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n + i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n J + 1 / n A + I + 1 / n A R + I + 1 / n A J + 1 / n A R
352 129 2timesd φ 2 I + 1 / n A = I + 1 / n A + I + 1 / n A
353 129 119 129 ppncand φ I + 1 / n A + J + 1 / n A + I + 1 / n A J + 1 / n A = I + 1 / n A + I + 1 / n A
354 129 119 addcomd φ I + 1 / n A + J + 1 / n A = J + 1 / n A + I + 1 / n A
355 354 oveq1d φ I + 1 / n A + J + 1 / n A + I + 1 / n A J + 1 / n A = J + 1 / n A + I + 1 / n A + I + 1 / n A J + 1 / n A
356 352 353 355 3eqtr2d φ 2 I + 1 / n A = J + 1 / n A + I + 1 / n A + I + 1 / n A J + 1 / n A
357 356 oveq1d φ 2 I + 1 / n A R = J + 1 / n A + I + 1 / n A + I + 1 / n A J + 1 / n A R
358 2cnd φ 2
359 358 129 280 mul32d φ 2 I + 1 / n A R = 2 R I + 1 / n A
360 217 recnd φ J + 1 / n A + I + 1 / n A
361 224 recnd φ I + 1 / n A J + 1 / n A
362 360 361 280 adddird φ J + 1 / n A + I + 1 / n A + I + 1 / n A J + 1 / n A R = J + 1 / n A + I + 1 / n A R + I + 1 / n A J + 1 / n A R
363 357 359 362 3eqtr3d φ 2 R I + 1 / n A = J + 1 / n A + I + 1 / n A R + I + 1 / n A J + 1 / n A R
364 351 363 breqtrrd φ J + 1 / n A n 0 ..^ J + 1 X L n I + 1 / n A n 0 ..^ I + 1 X L n + i I + 1 ..^ J + 1 i + 1 / n A i / n A n 0 ..^ i + 1 X L n 2 R I + 1 / n A
365 95 160 104 216 364 letrd φ i I + 1 ..^ J + 1 X L i i / n A 2 R I + 1 / n A
366 2nn0 2 0
367 nn0ge0 2 0 0 2
368 366 367 mp1i φ 0 2
369 0red φ 0
370 127 absge0d φ 0 n 0 ..^ J + 1 X L n
371 369 259 15 370 262 letrd φ 0 R
372 97 15 368 371 mulge0d φ 0 2 R
373 24 nnrpd φ I + 1 +
374 nfv n M U U x
375 304 305 106 nfbr n B U / n A
376 374 375 nfim n M U U x B U / n A
377 302 376 nfralw n x + M U U x B U / n A
378 breq2 n = U M n M U
379 breq1 n = U n x U x
380 378 379 anbi12d n = U M n n x M U U x
381 108 breq2d n = U B A B U / n A
382 380 381 imbi12d n = U M n n x B A M U U x B U / n A
383 382 ralbidv n = U x + M n n x B A x + M U U x B U / n A
384 377 383 rspc U + n + x + M n n x B A x + M U U x B U / n A
385 17 300 384 sylc φ x + M U U x B U / n A
386 18 19 jca φ M U U I + 1
387 breq2 x = I + 1 U x U I + 1
388 387 anbi2d x = I + 1 M U U x M U U I + 1
389 eqvisset x = I + 1 I + 1 V
390 eqtr3 x = I + 1 n = I + 1 x = n
391 390 323 syl x = I + 1 n = I + 1 A = B
392 389 391 csbied x = I + 1 I + 1 / n A = B
393 392 eqcomd x = I + 1 B = I + 1 / n A
394 393 breq1d x = I + 1 B U / n A I + 1 / n A U / n A
395 388 394 imbi12d x = I + 1 M U U x B U / n A M U U I + 1 I + 1 / n A U / n A
396 395 rspcv I + 1 + x + M U U x B U / n A M U U I + 1 I + 1 / n A U / n A
397 373 385 386 396 syl3c φ I + 1 / n A U / n A
398 103 111 98 372 397 lemul2ad φ 2 R I + 1 / n A 2 R U / n A
399 95 104 112 365 398 letrd φ i I + 1 ..^ J + 1 X L i i / n A 2 R U / n A
400 94 399 eqbrtrd φ seq 1 + F J seq 1 + F I 2 R U / n A